Kehon hyödyntämisen mahdollisuudet luonnontieteiden oppimisessa
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2020Tekijänoikeudet
© The Author & University of Jyväskylä
In recent years, Finnish pupils’ interest in natural sciences education has been declining. For this study, new bodily methods were developed in which learning is based on the bodily learning experience and its reflection. In Finnish science education, the effect of learning methods that utilize bodily learning experiences has not been investigated. The purpose of this study is to explore the possibilities of utilizing the body in multidisciplinary science education and to find out how students experience bodily learning in natural sciences. In addition, the aim is to find out what new information machine learning–based artificial intelligence solutions can process based on the collected data.
The thesis a multi-method study based on four research articles in which students’ (n = 611) experiences of utilizing the body in learning were investigated with questionnaires. The responses were analyzed using traditional statistical methods and unsupervised machine learning–based cluster analysis.
The main result of the research is that new methods that utilize the body create a meaningful and memorable learning experience that helps concretize the abstract phenomenon. Bodily learning can take place in various learning environments, and variability as well as increased physical activity can increase students’ alertness and interest in instruction. Overall, more than 80% of students found the new methods more interesting compared to the traditional classroom work, which can increase students’ motivation and interest in science education. Research shows that the bodily methods could motivate students to learn, especially boys and weaker students, for whom learning abstract science concepts using traditional methods is challenging. Most students felt that learning and remembering phenomena are more effective when the body is utilized in the learning process. Examining the ability of machine learning–based artificial intelligence applications to process new information from survey data, it was found that unsupervised machine learning is a useful tool for identifying students with different learning profiles.
Based on the theoretical framework of the work and the students’ experiences, a learning model that utilizes the body was created. This model can be utilized in the design of meaningful science education.
...
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-8452-6ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I:Moilanen, H., Äyrämö, S., & Kankaanranta, M. (2018) Learning physics outside the classroom by combinating use of tablets and bodily activity. Proceedings of EdMedia + Innovate Learning Conference, Association for the Advancement of Computing in Education.
- Artikkeli II: Moilanen, H., Äyrämö, S., & Kankaanranta, M. (2018). Detecting pupils’ opinions on learning physics bodily by unsupervised machine learning. In S. Carliner (Ed.), E-Learn 2018 : World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 27-38). Association for the Advancement of Computing in Education (AACE). www.learntechlib.org/primary/p/184946/
- Artikkeli III: Moilanen, H., Äyrämö, S., & Kankaanranta, M. (2019). Fysiikkaa liikkuen : 7-luokkalaisten oppilaiden ja opettajien kokemuksia kehollisesta opetuksesta fysiikassa. In M. Rautiainen, & M. Tarnanen (Eds.), Tutkimuksesta luokkahuoneisiin (pp. 299-324). Suomen ainedidaktinen tutkimusseura ry; Jyväskylän yliopisto. hdl.handle.net/10138/298542
- Artikkeli IV: Moilanen, H., Äyrämö, S., Jauhiainen, S., & Kankaanranta, M. (2018). Collecting and Using Students’ Digital Well-Being Data in Multidisciplinary Teaching. Education Research International, 2018, 3012079. DOI: 10.1155/2018/3012079
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [852]
- Väitöskirjat [3574]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Explainability in Educational Data Mining and Learning Analytics : An Umbrella Review
Gunasekara, Sachini; Saarela, Mirka (International Educational Data Mining Society, 2024)This paper presents an umbrella review synthesizing the findings of explainability studies within the EDM and LA domains. By systematically reviewing existing reviews and adhering to the PRISMA guidelines, we identified ... -
Expectations for supporting student engagement with learning analytics : an academic path perspective
Silvola, Anni; Näykki, Piia; Kaveri, Anceli; Muukkonen, Hanni (Elsevier, 2021)There has been a growing interest in higher education to explore how learning analytics (LA) could be used to support student engagement. Providing actionable feedback with LA for students is an emerging area of research. ... -
Oppilaiden näkemyksiä luonnontieteiden opettajan auktoriteetistä
Ojala, Saija; Välisaari, Jouni; Lundell, Jan (Valtakunnallinen LUMA-keskus, 2019)Tässä tutkimuksessa selvitettiin oppilaiden näkemyksiä luonnontieteiden opettajan auktoriteetista, sen muodostumisesta ja kehittämisestä. Tutkimus pohjautuu fenomenologis-hermeneuttisen tutkimuksen piirteisiin. Oppilaiden ... -
Enemmän iloa oppimiseen : neljännen luokan oppilaiden lukutaito sekä matematiikan ja luonnontieteiden osaaminen : kansainväliset PIRLS- ja TIMSS-tutkimukset Suomessa
Kupari, Pekka; Sulkunen, Sari; Vettenranta, Jouni; Nissinen, Kari (Jyväskylän yliopisto, Koulutuksen tutkimuslaitos, 2012) -
Oppijalähtöistä pedagogiikkaa etsimään : kahdeksannen luokan oppilaiden matematiikan ja luonnontieteiden osaaminen : kansainvälinen TIMSS-tutkimus Suomessa
Kupari, Pekka; Vettenranta, Jouni; Nissinen, Kari (Jyväskylän yliopisto, Koulutuksen tutkimuslaitos, 2012)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.