Näytä suppeat kuvailutiedot

dc.contributor.authorLi, Zewei
dc.contributor.authorKavanagh, Seán R.
dc.contributor.authorNapari, Mari
dc.contributor.authorPalgrave, Robert G.
dc.contributor.authorAbdi-Jalebi, Mojtaba
dc.contributor.authorAndaji-Garmaroudi, Zahra
dc.contributor.authorDavies, Daniel W.
dc.contributor.authorLaitinen, Mikko
dc.contributor.authorJulin, Jaakko
dc.contributor.authorIsaacs, Mark A.
dc.contributor.authorFriend, Richard H.
dc.contributor.authorScanlon, David O.
dc.contributor.authorWalsh, Aron
dc.contributor.authorHoye, Robert L. Z.
dc.date.accessioned2020-12-01T11:03:07Z
dc.date.available2020-12-01T11:03:07Z
dc.date.issued2020
dc.identifier.citationLi, Z., Kavanagh, S. R., Napari, M., Palgrave, R. G., Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Davies, D. W., Laitinen, M., Julin, J., Isaacs, M. A., Friend, R. H., Scanlon, D. O., Walsh, A., & Hoye, R. L. Z. (2020). Bandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films. <i>Journal of Materials Chemistry A</i>, <i>8</i>(41), 21780-21788. <a href="https://doi.org/10.1039/D0TA07145E" target="_blank">https://doi.org/10.1039/D0TA07145E</a>
dc.identifier.otherCONVID_47222817
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72899
dc.description.abstractHalide double perovskites have gained significant attention, owing to their composition of low-toxicity elements, stability in air and long charge-carrier lifetimes. However, most double perovskites, including Cs2AgBiBr6, have wide bandgaps, which limits photoconversion efficiencies. The bandgap can be reduced through alloying with Sb3+, but Sb-rich alloys are difficult to synthesize due to the high formation energy of Cs2AgSbBr6, which itself has a wide bandgap. We develop a solution-based route to synthesize phase-pure Cs2Ag(SbxBi1−x)Br6 thin films, with the mixing parameter x continuously varying over the entire composition range. We reveal that the mixed alloys (x between 0.5 and 0.9) demonstrate smaller bandgaps than the pure Sb- and Bi-based compounds. The reduction in the bandgap of Cs2AgBiBr6 achieved through alloying (170 meV) is larger than if the mixed alloys had obeyed Vegard's law (70 meV). Through in-depth computations, we propose that bandgap lowering arises from the type II band alignment between Cs2AgBiBr6 and Cs2AgSbBr6. The energy mismatch between the Bi and Sb s and p atomic orbitals, coupled with their non-linear mixing, results in the alloys adopting a smaller bandgap than the pure compounds. Our work demonstrates an approach to achieve bandgap reduction and highlights that bandgap bowing may be found in other double perovskite alloys by pairing together materials forming a type II band alignment.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofseriesJournal of Materials Chemistry A
dc.rightsCC BY 3.0
dc.titleBandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin films
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202012016860
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange21780-21788
dc.relation.issn2050-7488
dc.relation.numberinseries41
dc.relation.volume8
dc.type.versionpublishedVersion
dc.rights.copyright© The Royal Society of Chemistry 2020
dc.rights.accesslevelopenAccessfi
dc.subject.ysometalliseokset
dc.subject.ysoohutkalvot
dc.subject.ysovalokemia
dc.subject.ysovalokennot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4519
jyx.subject.urihttp://www.yso.fi/onto/yso/p16644
jyx.subject.urihttp://www.yso.fi/onto/yso/p7201
jyx.subject.urihttp://www.yso.fi/onto/yso/p19369
dc.rights.urlhttps://creativecommons.org/licenses/by/3.0/
dc.relation.doi10.1039/D0TA07145E
jyx.fundinginformationZ. L. would like to thank Cambridge Trust and Chinese Scholarship Council for financial support. S. R. K. acknowledges funding from the EPSRC Centre for Doctoral Training in Advanced Characterisation of Materials (CDT-ACM) (EP/S023259/1), the use of the UCL Grace High Performance Computing Facility (Grace@UCL), the Imperial College Research Computing Service (DOI: 10.14469/hpc/2232), and associated support services in the completion of this work. Via membership of the UK's HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202), this work also used the UK Materials and Molecular Modelling (MMM) Hub for computational resources, which is partially funded by the EPSRC (EP/P020194). R. L. Z. H. acknowledges support from the Royal Academy of Engineering under the Research Fellowship Programme (No. RF\201718\1701), the Isaac Newton Trust (Minute 19.07(d)), and the Kim and Juliana Silverman Research Fellowship at Downing College, Cambridge. M. A.-J. thanks Cambridge Materials Limited, Wolfson College, University of Cambridge and EPSRC (grant no. EP/M005143/1) for their funding and technical support. For the RBS experiments, the authors acknowledge the RADIATE project under the Grant Agreement 824096 from the EU Research and Innovation programme HORIZON 2020. The X-ray photoelectron (XPS) and UV photoelectron (UPS) data collection was performed at the EPSRC National Facility for XPS (“HarwellXPS”), operated by Cardiff University and UCL, under Contract No. PR16195.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 3.0
Ellei muuten mainita, aineiston lisenssi on CC BY 3.0