Weighted BMO, Riemann-Liouville Type Operators, and Approximation of Stochastic Integrals in Models with Jumps
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2020Tekijänoikeudet
© The Author & University of Jyväskylä
This thesis investigates the interplay between weighted bounded mean oscillation (BMO),
Riemann–Liouville type operators applied to càdlàg processes, real interpolation, gradient type
estimates for functionals on the Lévy–Itô space, and approximation for stochastic integrals with
jumps.
There are two main parts included in this thesis. The first part discusses the connections between
the approximation problem in L2 or in weighted BMO, Riemann–Liouville type operators,
and the real interpolation theory in a general framework (Chapter 3).
The second part provides various applications of results in the first part to several models:
diffusions in the Brownian setting (Section 3.5) and certain jump models (Chapter 4) for which
the (exponential) Lévy settings are typical examples (Chapter 6 and Chapter 7). Especially, for
the models with jumps we propose a new approximation scheme based on an adjustment of the
Riemann approximation of stochastic integrals so that one can effectively exploit the features of
weighted BMO.
In our context, making a bridge from the first to the second part requires gradient type estimates
for a semigroup acting on Hölder functions in both the Brownian setting (Section 3.5)
and the (exponential) Lévy setting (Chapter 5). In the latter case, we consider a kind of gradient
processes appearing naturally from the Malliavin derivative of functionals of the Lévy process,
and we show how the gradient behaves in time depending on the “direction” one tests.
...
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-8442-7ISSN Hae Julkaisufoorumista
2489-9003Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [852]
- Väitöskirjat [3578]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On Malliavin calculus and approximation of stochastic integrals for Lévy processes
Laukkarinen, Eija (University of Jyväskylä, 2012) -
On fractional smoothness and approximations of stochastic integrals
Toivola, Anni (University of Jyväskylä, 2009) -
Mean square rate of convergence for random walk approximation of forward-backward SDEs
Geiss, Christel; Labart, Céline; Luoto, Antti (Cambridge University Press (CUP), 2020)Let (Y, Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk from the underlying Brownian motion B by Skorokhod embedding, one can show -convergence of ... -
Approximation of heat equation and backward SDEs using random walk : convergence rates
Luoto, Antti (University of Jyväskylä, 2018)This thesis addresses questions related to approximation arising from the fields of stochastic analysis and partial differential equations. Theoretical results regarding convergence rates are obtained by using discretization ... -
On the approximation of stochastic integrals
Hujo, Mika (University of Jyväskylä, 2005)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.