Näytä suppeat kuvailutiedot

dc.contributor.authorPaternain, Gabriel P.
dc.contributor.authorSalo, Mikko
dc.date.accessioned2020-11-17T06:20:20Z
dc.date.available2020-11-17T06:20:20Z
dc.date.issued2021
dc.identifier.citationPaternain, G. P., & Salo, M. (2021). A sharp stability estimate for tensor tomography in non-positive curvature. <i>Mathematische Zeitschrift</i>, <i>298</i>(3-4), 1323-1344. <a href="https://doi.org/10.1007/s00209-020-02638-x" target="_blank">https://doi.org/10.1007/s00209-020-02638-x</a>
dc.identifier.otherCONVID_47012953
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/72638
dc.description.abstractWe consider the geodesic X-ray transform acting on solenoidal tensor fields on a compact simply connected manifold with strictly convex boundary and non-positive curvature. We establish a stability estimate of the form L2↦H1/2TL2↦HT1/2, where the H1/2THT1/2-space is defined using the natural parametrization of geodesics as initial boundary points and incoming directions (fan-beam geometry); only tangential derivatives at the boundary are used. The proof is based on the Pestov identity with boundary term localized in frequency.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesMathematische Zeitschrift
dc.rightsCC BY 4.0
dc.titleA sharp stability estimate for tensor tomography in non-positive curvature
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202011176658
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineInversio-ongelmien huippuyksikköfi
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineCentre of Excellence in Inverse Problemsen
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1323-1344
dc.relation.issn0025-5874
dc.relation.numberinseries3-4
dc.relation.volume298
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2020
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber312121
dc.relation.grantnumber770924
dc.relation.grantnumber770924
dc.relation.grantnumber309963
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/770924/EU//IPTheoryUnified
dc.subject.ysoinversio-ongelmat
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00209-020-02638-x
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramERC Consolidator Granten
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramERC Consolidator Grantfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationWe are very grateful to the referee for several comments that improved the presentation and in particular for suggesting a simplified proof of Lemma 4.4. GPP was supported by EPSRC Grant EP/R001898/1 and the Leverhulme trust. MS was supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Modelling and Imaging, Grant Numbers 312121 and 309963) and by the European Research Council under Horizon 2020 (ERC CoG 770924). This material is based upon work supported by the National Science Foundation under Grant No. 1440140, while the authors were in residence at MSRI in Berkeley, California, during the semester on Microlocal Analysis in 2019.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0