dc.contributor.author | Paolucci, Federico | |
dc.contributor.author | Ligato, Nadia | |
dc.contributor.author | Buccheri, Vittorio | |
dc.contributor.author | Germanese, Gaia | |
dc.contributor.author | Virtanen, Pauli | |
dc.contributor.author | Giazotto, Francesco | |
dc.date.accessioned | 2020-11-13T05:59:54Z | |
dc.date.available | 2020-11-13T05:59:54Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Paolucci, F., Ligato, N., Buccheri, V., Germanese, G., Virtanen, P., & Giazotto, F. (2020). Hypersensitive Tunable Josephson Escape Sensor for Gigahertz Astronomy. <i>Physical Review Applied</i>, <i>14</i>(3), Article 034055. <a href="https://doi.org/10.1103/PhysRevApplied.14.034055" target="_blank">https://doi.org/10.1103/PhysRevApplied.14.034055</a> | |
dc.identifier.other | CONVID_46963493 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/72599 | |
dc.description.abstract | Single-photon detectors and bolometers represent the bridge between different topics in science, such as quantum computation, astronomy, particle physics, and biology. Nowadays, superconducting bolometers and calorimeters are the most-sensitive detectors in the terahertz and subterahertz bands. Here, we propose and demonstrate a Josephson escape sensor (JES) that could find natural application in astrophysics. The JES is composed of a fully superconducting one-dimensional Josephson junction, whose resistance-versus-temperature characteristics can be precisely controlled by a bias current. Therefore, differently from traditional superconducting detectors, the JES sensitivity and working temperature can be in situ simply and finely tuned depending on the application requirements. A JES bolometer is expected to show an intrinsic thermal-fluctuation-noise noise-equivalent power on the order of
10−25 W/Hz1/2, while a JES calorimeter could provide a frequency resolution of about 2 GHz, as deduced from the experimental data. In addition, the sensor can operate at the critical temperature (i.e., working as a conventional transition-edge sensor), with a noise-equivalent power of approximately 6×10−20 W/Hz1/2 and a frequency resolution of approximately 100 GHz. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.ispartofseries | Physical Review Applied | |
dc.rights | In Copyright | |
dc.title | Hypersensitive Tunable Josephson Escape Sensor for Gigahertz Astronomy | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202011136632 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2331-7019 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 14 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 American Physical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 800923 | |
dc.relation.grantnumber | 800923 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/800923/EU//SUPERTED | |
dc.subject.yso | tutkimuslaitteet | |
dc.subject.yso | suprajohteet | |
dc.subject.yso | ilmaisimet | |
dc.subject.yso | astrofysiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2440 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9946 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4220 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20188 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1103/PhysRevApplied.14.034055 | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | FET Future and Emerging Technologies, H2020 | en |
jyx.fundingprogram | FET Future and Emerging Technologies, H2020 | fi |
jyx.fundinginformation | We acknowledge the European Union’s Horizon 2020 research and innovation program under Grant No. 777222 ATTRACT (T-CONVERSE project) and under Grant Agreement No. 800923-SUPERTED. We acknowledge CSN V of INFN under the technology innovation grant SIMP. The work of F.P. was partially supported by the Tuscany Government (Grant No. POR FSE 2014-2020) through the INFN-RT2 172800 project. The work of V.B. is partially funded by the European Union (Grant No. 777222 ATTRACT) through the T-CONVERSE project. | |
dc.type.okm | A1 | |