dc.contributor.author | Ryabchun, Alexander | |
dc.contributor.author | Lancia, Federico | |
dc.contributor.author | Chen, Jiawen | |
dc.contributor.author | Morozov, Dmitry | |
dc.contributor.author | Feringa, Ben L. | |
dc.contributor.author | Katsonis, Nathalie | |
dc.date.accessioned | 2020-10-21T05:22:26Z | |
dc.date.available | 2020-10-21T05:22:26Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Ryabchun, A., Lancia, F., Chen, J., Morozov, D., Feringa, B. L., & Katsonis, N. (2020). Helix Inversion Controlled by Molecular Motors in Multistate Liquid Crystals. <i>Advanced Materials</i>, <i>32</i>(47), Article 2004420. <a href="https://doi.org/10.1002/adma.202004420" target="_blank">https://doi.org/10.1002/adma.202004420</a> | |
dc.identifier.other | CONVID_42881369 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/72274 | |
dc.description.abstract | Unravelling the rules of molecular motion is a contemporary challenge that promises to support the development of responsive materials and is likely to enhance the understanding of functional motion. Advances in integrating light‐driven molecular motors in soft matter have led to the design and realization of chiral nematic (cholesteric) liquid crystals that can respond to light with modification of their helical pitch, and also with helix inversion. Under illumination, these chiral liquid crystals convert from one helical geometry to another. Here, a series of light‐driven molecular motors that feature a rich configurational landscape is presented, specifically which involves three stable chiral states. The succession of chiral structures involved in the motor cycle is transmitted at higher structural levels, as the cholesteric liquid crystals that are formed can interconvert between helices of opposite handedness, reversibly. In these materials, the dynamic features of the motors are thus expressed at the near‐macroscopic, functional level, into addressable colors that can be used in advanced materials for tunable optics and photonics. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Wiley-VCH Verlag | |
dc.relation.ispartofseries | Advanced Materials | |
dc.rights | CC BY-NC 4.0 | |
dc.subject.other | molekyylimoottorit | |
dc.subject.other | chirality | |
dc.subject.other | light‐responsive materials | |
dc.subject.other | liquid crystals | |
dc.subject.other | molecular motors | |
dc.title | Helix Inversion Controlled by Molecular Motors in Multistate Liquid Crystals | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202010216330 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0935-9648 | |
dc.relation.numberinseries | 47 | |
dc.relation.volume | 32 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 The Authors. Published by Wiley-VCH GmbH | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 285481 | |
dc.subject.yso | nanotekniikka | |
dc.subject.yso | molekyylit | |
dc.subject.yso | kiteet | |
dc.subject.yso | valokemia | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11463 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2984 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15440 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7201 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.relation.doi | 10.1002/adma.202004420 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundinginformation | N.K. acknowledges funding support from the European Research Council (ERC Consolidator Grant Morpheus 30968307). B.L.F. acknowledges financial support from the European Research Council (ERC Advanced Grant No. 694345 to B.L.F.) and the Ministry of Education, Culture and Science of the Netherlands (Gravitation Program No. 024.001.035). D.M. acknowledges funding by the Academy of Finland (Grant No. 285481) and the CSC-IT Centre of
Science (Finland) for providing computational resources. | |
dc.type.okm | A1 | |