Helix Inversion Controlled by Molecular Motors in Multistate Liquid Crystals
Abstract
Unravelling the rules of molecular motion is a contemporary challenge that promises to support the development of responsive materials and is likely to enhance the understanding of functional motion. Advances in integrating light‐driven molecular motors in soft matter have led to the design and realization of chiral nematic (cholesteric) liquid crystals that can respond to light with modification of their helical pitch, and also with helix inversion. Under illumination, these chiral liquid crystals convert from one helical geometry to another. Here, a series of light‐driven molecular motors that feature a rich configurational landscape is presented, specifically which involves three stable chiral states. The succession of chiral structures involved in the motor cycle is transmitted at higher structural levels, as the cholesteric liquid crystals that are formed can interconvert between helices of opposite handedness, reversibly. In these materials, the dynamic features of the motors are thus expressed at the near‐macroscopic, functional level, into addressable colors that can be used in advanced materials for tunable optics and photonics.
Main Authors
Format
Articles
Research article
Published
2020
Series
Subjects
Publication in research information system
Publisher
Wiley-VCH Verlag
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202010216330Use this for linking
Review status
Peer reviewed
ISSN
0935-9648
DOI
https://doi.org/10.1002/adma.202004420
Language
English
Published in
Advanced Materials
Citation
- Ryabchun, A., Lancia, F., Chen, J., Morozov, D., Feringa, B. L., & Katsonis, N. (2020). Helix Inversion Controlled by Molecular Motors in Multistate Liquid Crystals. Advanced Materials, 32(47), Article 2004420. https://doi.org/10.1002/adma.202004420
Funder(s)
Research Council of Finland
Funding program(s)
Postdoctoral Researcher, AoF
Tutkijatohtori, SA

Additional information about funding
N.K. acknowledges funding support from the European Research Council (ERC Consolidator Grant Morpheus 30968307). B.L.F. acknowledges financial support from the European Research Council (ERC Advanced Grant No. 694345 to B.L.F.) and the Ministry of Education, Culture and Science of the Netherlands (Gravitation Program No. 024.001.035). D.M. acknowledges funding by the Academy of Finland (Grant No. 285481) and the CSC-IT Centre of
Science (Finland) for providing computational resources.
Copyright© 2020 The Authors. Published by Wiley-VCH GmbH