dc.contributor.author | Annala, Leevi | |
dc.contributor.author | Neittaanmäki, Noora | |
dc.contributor.author | Paoli, John | |
dc.contributor.author | Zaar, Oscar | |
dc.contributor.author | Pölönen, Ilkka | |
dc.date.accessioned | 2020-10-13T08:47:56Z | |
dc.date.available | 2020-10-13T08:47:56Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Annala, L., Neittaanmäki, N., Paoli, J., Zaar, O., & Pölönen, I. (2020). Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network. In <i>EMBC 2020 : Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> (pp. 1600-1603). IEEE. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. <a href="https://doi.org/10.1109/EMBC44109.2020.9176292" target="_blank">https://doi.org/10.1109/EMBC44109.2020.9176292</a> | |
dc.identifier.other | CONVID_41828599 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/72130 | |
dc.description.abstract | In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural networks compete. The generator tries to produce data that is similar to the measured data, and the discriminator tries to correctly classify the data as fake or real. This is a reinforcement learning model, where both models get reinforcement based on their performance. In the training of the discriminator we use data measured from skin cancer patients. The aim for the study is to develop a generator for augmenting hyperspectral skin cancer imagery. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | EMBC 2020 : Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society | |
dc.relation.ispartofseries | Annual International Conference of the IEEE Engineering in Medicine and Biology Society | |
dc.rights | In Copyright | |
dc.subject.other | generative adversarial neural networks | |
dc.subject.other | skin cancer | |
dc.title | Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202010136188 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-1-7281-1991-5 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1600-1603 | |
dc.relation.issn | 2375-7477 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © IEEE, 2020 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | Annual International Conference of the IEEE Engineering in Medicine and Biology Society | |
dc.relation.grantnumber | 314519 | |
dc.subject.yso | ihosyöpä | |
dc.subject.yso | neuroverkot | |
dc.subject.yso | spektrikuvaus | |
dc.subject.yso | kuvantaminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13613 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26364 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3532 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1109/EMBC44109.2020.9176292 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundinginformation | This research was partly funded by Academy of Finland (grant: 314519). | |
dc.type.okm | A4 | |