dc.contributor.author | Luisto, Rami | |
dc.contributor.author | Pankka, Pekka | |
dc.date.accessioned | 2020-09-14T10:52:23Z | |
dc.date.available | 2020-09-14T10:52:23Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Luisto, R., & Pankka, P. (2020). Stoïlow's theorem revisited. <i>Expositiones Mathematicae</i>, <i>38</i>(3), 303-318. <a href="https://doi.org/10.1016/j.exmath.2019.04.002" target="_blank">https://doi.org/10.1016/j.exmath.2019.04.002</a> | |
dc.identifier.other | CONVID_32094174 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/71752 | |
dc.description.abstract | Stoïlow’s theorem from 1928 states that a continuous, open, and light map between surfaces is a discrete map with a discrete branch set. This result implies that such maps between orientable surfaces are locally modeled by power maps z→zk and admit a holomorphic factorization.The purpose of this expository article is to give a proof of this classical theorem having readers in mind that are interested in continuous, open and discrete maps. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Expositiones Mathematicae | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | continuous open and light mappings | |
dc.subject.other | continuous open and discrete mappings | |
dc.subject.other | Stoilow’s theorem | |
dc.title | Stoïlow's theorem revisited | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202009145850 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 303-318 | |
dc.relation.issn | 0723-0869 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 38 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 Elsevier GmbH. All rights reserved. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 713998 | |
dc.relation.grantnumber | 288501 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG | |
dc.subject.yso | funktioteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18494 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.exmath.2019.04.002 | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | ERC Starting Grant | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | ERC Starting Grant | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | R.L. has been partially supported by a grant of the Finnish Academy of Science and Letters, the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’) and by the European Research Council (ERCStarting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). P.P. has been partially supported by the Academy of Finland projects #256228 and #297258. | |
dc.type.okm | A1 | |