dc.contributor.author | Luoto, Antti | |
dc.date.accessioned | 2020-09-10T10:29:47Z | |
dc.date.available | 2020-09-10T10:29:47Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Luoto, A. (2021). Time-dependent weak rate of convergence for functions of generalized bounded variation. <i>Stochastic Analysis and Applications</i>, <i>39</i>(3), 494-524. <a href="https://doi.org/10.1080/07362994.2020.1809458" target="_blank">https://doi.org/10.1080/07362994.2020.1809458</a> | |
dc.identifier.other | CONVID_41949122 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/71715 | |
dc.description.abstract | Let W denote the Brownian motion. For any exponentially bounded Borel function g the function u defined by u(t,x)=E[g(x+σWT−t)] is the stochastic solution of the backward heat equation with terminal condition g. Let un(t,x) denote the corresponding approximation generated by a simple symmetric random walk with time steps 2T/n and space steps ±σ√T/n where σ>0. For a class of terminal functions g having bounded variation on compact intervals, the rate of convergence of un(t,x) to u(t, x) is considered, and also the behavior of the error un(t,x)−u(t,x) as t tends to T. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Taylor & Francis | |
dc.relation.ispartofseries | Stochastic Analysis and Applications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Approximation using simple random walk | |
dc.subject.other | weak rate of convergence | |
dc.subject.other | finite difference approximation of the heat equation | |
dc.title | Time-dependent weak rate of convergence for functions of generalized bounded variation | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202009105821 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 494-524 | |
dc.relation.issn | 0736-2994 | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 39 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2020 The Author(s). Published with license by Taylor and Francis Group, LLC | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | numeerinen analyysi | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.subject.yso | approksimointi | |
dc.subject.yso | stokastiset prosessit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15833 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4982 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p11400 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1080/07362994.2020.1809458 | |
jyx.fundinginformation | The author was financially supported by the Magnus Ehrnrooth Foundation and The FinnishCultural Foundation during the preparation of this article. | |
dc.type.okm | A1 | |