University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Traces for Function Spaces on Metric Measure Spaces

Thumbnail
View/Open
1.8 Mb

Downloads:  
Show download detailsHide download details  
Published in
JYU dissertations
Authors
Wang, Zhuang
Date
2020

 
ISBN
978-951-39-8260-7
Contains publications
  • Artikkeli I: Koskela, P., Soto, T., & Wang, Z. (2017). Traces of weighted function spaces : Dyadic norms and Whitney extensions. Science China Mathematics, 60 (11), 1981-2010. DOI: 10.1007/s11425-017-9148-6
  • Artikkeli II: Koskela, Pekka; Wang, Zhuang (2019). Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees. Potential Analysis, First Online. DOI: 10.1007/s11118-019-09808-5
  • Artikkeli III: P. Lahti, X. Li and Z. Wang, Traces of Newton-Sobolev, Haj lasz-Sobolev, and BV functions on metric spaces. Annali della Scuola normale superiore di Pisa - Classe di scienze (5), accepted. ArXiv:1911.00533.
  • Artikkeli IV: Z. Wang, Characterization of trace spaces on regular trees via dyadic norms. Submitted. ArXiv:2004.03432.
Keywords
funktioteoria metriset avaruudet harmoninen analyysi funktionaalianalyysi
URI

http://urn.fi/URN:ISBN:978-951-39-8260-7

Metadata
Show full item record
Collections
  • Väitöskirjat [3176]

Related items

Showing items with similar title or keywords.

  • The Hajłasz Capacity Density Condition is Self-improving 

    Canto, Javier; Vähäkangas, Antti V. (Springer Science and Business Media LLC, 2022)
    We prove a self-improvement property of a capacity density condition for a nonlocal Hajłasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary ...
  • Uniformization with Infinitesimally Metric Measures 

    Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)
    We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ...
  • On a class of singular measures satisfying a strong annular decay condition 

    Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)
    A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ...
  • Quasispheres and metric doubling measures 

    Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)
    Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ...
  • Approximation by uniform domains in doubling quasiconvex metric spaces 

    Rajala, Tapio (Springer, 2021)
    We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre