dc.contributor.author | Hu, Guoqiang | |
dc.contributor.author | Zhou, Tianyi | |
dc.contributor.author | Luo, Siwen | |
dc.contributor.author | Mahini, Reza | |
dc.contributor.author | Xu, Jing | |
dc.contributor.author | Chang, Yi | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2020-08-05T05:14:06Z | |
dc.date.available | 2020-08-05T05:14:06Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Hu, G., Zhou, T., Luo, S., Mahini, R., Xu, J., Chang, Y., & Cong, F. (2020). Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis. <i>Biomedical Engineering Online</i>, <i>19</i>, Article 61. <a href="https://doi.org/10.1186/s12938-020-00796-x" target="_blank">https://doi.org/10.1186/s12938-020-00796-x</a> | |
dc.identifier.other | CONVID_41682898 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/71329 | |
dc.description.abstract | Background
Nonnegative matrix factorization (NMF) has been successfully used for electroencephalography (EEG) spectral analysis. Since NMF was proposed in the 1990s, many adaptive algorithms have been developed. However, the performance of their use in EEG data analysis has not been fully compared. Here, we provide a comparison of four NMF algorithms in terms of accuracy of estimation, stability (repeatability of the results) and time complexity of algorithms with simulated data. In the practical application of NMF algorithms, stability plays an important role, which was an emphasis in the comparison. A Hierarchical clustering algorithm was implemented to evaluate the stability of NMF algorithms.
Results
In simulation-based comprehensive analysis of fit, stability, accuracy of estimation and time complexity, hierarchical alternating least squares (HALS) low-rank NMF algorithm (lraNMF_HALS) outperformed the other three NMF algorithms. In the application of lraNMF_HALS for real resting-state EEG data analysis, stable and interpretable features were extracted.
Conclusion
Based on the results of assessment, our recommendation is to use lraNMF_HALS, providing the most accurate and robust estimation. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | BioMed Central | |
dc.relation.ispartofseries | Biomedical Engineering Online | |
dc.rights | CC BY 4.0 | |
dc.subject.other | nonnegative matrix factorization | |
dc.subject.other | stability | |
dc.subject.other | clustering | |
dc.subject.other | EEG | |
dc.title | Assessment of nonnegative matrix factorization algorithms for electroencephalography spectral analysis | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202008055474 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1475-925X | |
dc.relation.volume | 19 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2020 | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | spektrianalyysi | |
dc.subject.yso | algoritmit | |
dc.subject.yso | EEG | |
dc.subject.yso | klusterit | |
dc.subject.yso | stabiilius (muuttumattomuus) | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23978 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3328 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18755 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38304 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1186/s12938-020-00796-x | |
jyx.fundinginformation | This work was supported by National Natural Science Foundation of China (Grant Nos. 91748105 & 81471742) and the Fundamental Research Funds for the Central Universities [DUT2019] in Dalian University of Technology in China. This work was also supported by China Scholarship Council (No. 201806060038) and Natural Science Foundation of Liaoning Province (2019-MS-099). | |
dc.type.okm | A1 | |