The electron affinity of astatine

Abstract
One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and the electron–electron correlation effects on the highest level that can be currently achieved for many-electron systems. The developed technique of laser-photodetachment spectroscopy of radioisotopes opens the path for future EA measurements of other radioelements such as polonium, and eventually super-heavy elements.
Language
English
Published in
Nature Communications
Citation
  • Leimbach, D., Karls, J., Guo, Y., Ahmed, R., Ballof, J., Bengtsson, L., Boix Pamies, F., Borschevsky, A., Chrysalidis, K., Eliav, E., Fedorov, D., Fedosseev, V., Forstner, O., Galland, N., Garcia Ruiz, R. F., Granados, C., Heinke, R., Johnston, K., Koszorus, A., . . . Rothe, S. (2020). The electron affinity of astatine. Nature Communications, 11, Article 3824. https://doi.org/10.1038/s41467-020-17599-2
License
CC BY 4.0Open Access
Funder(s)
European Commission
Funding program(s)
Research infrastructures, H2020
Research infrastructures, H2020
European Commission
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.
Additional information about funding
We thank the ISOLDE technical team and the operators for their work converting ISOLDE to a negative ion machine. The Swedish Research Council is acknowledged for financial support. We would also like to thank the Center for Information Technology of the University of Groningen for their support and for providing access to the Peregrine high performance computing cluster. N.G. and E.R. acknowledge the French National Agency for Research for grants called Programme d′Investissements d′Avenir (ANR-11-EQPX-0004, ANR-11-LABX-0018). Y.L. acknowledges support from the Office of Nuclear Physics, U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No 654002 and by the innovative training network fellowship under grant No 642889. L.F.P. is grateful for the support from the Slovak Research and Development Agency (APVV-15-0105) and the Scientific Grant Agency of the Slovak Republic (1/0777/19). R.H. acknowledges support by the Bundesministerium für Bildung und Forschung (BMBF, Germany) under the consecutive projects 05P12UMCIA, 05P15UMCIA, and 05P18UMCIA. This work was also supported by the FNPMLS ERC Consolidator Grant no. 64838 and the FWO-Vlaanderen (Belgium) and the GOA 15/010 grant from KU Leuven. We would like to acknowledge Kevin Patrice Moles for his assistance with the design of Figs. 2 and 4.
Copyright© The Author(s) 2020

Share