Plasmon excitations in chemically heterogeneous nanoarrays

Abstract
The capability of collective excitations, such as localized surface plasmon resonances, to produce a versatile spectrum of optical phenomena is governed by the interactions within the collective and single-particle responses in the finite system. In many practical instances, plasmonic metallic nanoparticles and arrays are either topologically or chemically heterogeneous, which affects both the constituent transitions and their interactions. Here, the formation of collective excitations in weakly Cu- and Pd-doped Au nanoarrays is described using time-dependent density functional theory. The additional impurity-induced modes in the optical response can be thought to result from intricate interactions between separated excitations or transitions. We investigate the heterogeneity at the impurity level, the symmetry aspects related to the impurity position, and the influence of the impurity position on the confinement phenomena. The chemically rich and symmetry-dependent quantum mechanical effects are analyzed with transition contribution maps demonstrating the possibility to develop nanostructures with more controlled collective properties.
Main Authors
Format
Articles Research article
Published
2020
Series
Subjects
Publication in research information system
Publisher
American Physical Society
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202006174247Use this for linking
Review status
Peer reviewed
ISSN
2469-9950
DOI
https://doi.org/10.1103/PhysRevB.101.235132
Language
English
Published in
Physical Review B
Citation
  • Conley, K., Nayyar, N., Rossi, T. P., Kuisma, M., Turkowski, V., Puska, M. J., & Rahman, T. S. (2020). Plasmon excitations in chemically heterogeneous nanoarrays. Physical Review B, 101(23), Article 235132. https://doi.org/10.1103/PhysRevB.101.235132
License
In CopyrightOpen Access
Funder(s)
Research Council of Finland
Funding program(s)
Postdoctoral Researcher, AoF
Tutkijatohtori, SA
Research Council of Finland
Additional information about funding
The work was supported in part by US DOE Grant No. DE-FG02-07ER46354 (N.N., V.T., and T.S.R.) and as part of the Academy of Finland Centre of Excellence program (Project No. 251748, K.C. and M.J.P., and Project No. 312298, K.C.). T.P.R. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 838996. M.K. acknowledges funding from Academy of Finland under Grant No. 295602. We acknowledge computational resources provided by CSC–IT Center for Science (Finland) and by the Aalto Science-IT project (Aalto University School of Science).
Copyright© 2020 American Physical Society

Share