Existence of Optimal Transport Maps with Applications in Metric Geometry
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2020Tekijänoikeudet
© The Author & University of Jyväskylä
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-8183-9ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Schultz, T. (2018). Existence of optimal transport maps in very strict CD(K,∞) -spaces. Calculus of Variations and Partial Differential Equations, 57 (5), 139. DOI: 10.1007/s00526-018-1414-y
- Artikkeli II: Rajala, T. and Schultz T.Optimal transport maps on Alexandrov spaces revisited. Preprint. arXiv:1803.10023
- Artikkeli III: Schultz, T. Equivalent definitions of very strict CD(K, N)-spaces. Preprint. arXiv:1906.07693
- Artikkeli IV: Schultz, T. On one-dimensionality of metric measure spaces. Proc. Amer. Math.Soc., to appear.
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [867]
- Väitöskirjat [3596]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Existence of optimal transport maps in very strict CD(K,∞) -spaces
Schultz, Timo (Springer Berlin Heidelberg, 2018)We introduce a more restrictive version of the strict CD(K,∞) -condition, the so-called very strict CD(K,∞) -condition, and show the existence of optimal maps in very strict CD(K,∞) -spaces despite the possible ... -
On one-dimensionality of metric measure spaces
Schultz, Timo (American Mathematical Society (AMS), 2021)In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to ... -
Metric Rectifiability of H-regular Surfaces with Hölder Continuous Horizontal Normal
Di Donato, Daniela; Fässler, Katrin; Orponen, Tuomas (Oxford University Press, 2022)Two definitions for the rectifiability of hypersurfaces in Heisenberg groups Hn have been proposed: one based on H-regular surfaces and the other on Lipschitz images of subsets of codimension-1 vertical subgroups. The ... -
Indecomposable sets of finite perimeter in doubling metric measure spaces
Bonicatto, Paolo; Pasqualetto, Enrico; Rajala, Tapio (Springer, 2020)We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak (1,1)-Poincaré inequality. The two main results we obtain are a decomposition ... -
Infinitesimal Hilbertianity of Locally CAT(κ)-Spaces
Di Marino, Simone; Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Springer, 2021)We show that, given a metric space (Y,d)(Y,d) of curvature bounded from above in the sense of Alexandrov, and a positive Radon measure μμ on YY giving finite mass to bounded sets, the resulting metric measure space ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.