University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Väitöskirjat
  • View Item
JYX > Opinnäytteet > Väitöskirjat > View Item

Theoretical and Numerical Studies of the Dynamics of Open Quantum Systems

Thumbnail
View/Open
6.6 Mb

Downloads:  
Show download detailsHide download details  
Published in
JYU dissertations
Authors
Agasti, Souvik
Date
2020

 
Open quantum systems have drawn attention over decades due to its applicability in the foundation of theoretical physics, e.g. statistical mechanics, quantum mechanics and condensed matter physics. The dynamics of open quantum systems has been described as separate entities from their surrounding environment that consists of a very large number of modes, somehow coupled to the mode of the system. Even though the exact solution of the dynamical behavior of the system is impossible to calculate, we obtain a tentative solution using the crucial Markov approximation. The input-output formalism of the quantum Langevin equation (QLE) has been considered as a useful tool which provides a semi-classical description of the dynamics of the system, whereas the master equation provides a complete picture of the dynamics of the system expressed in terms of density matrix. While studying the dynamics of nonlinear system/environment coupling using QLE, we see, for a small value of external field, that the steady state system field does not change much from the steady state field obtained in the absence of nonlinear dissipation. However, in a case where a stronger external field is applied, we see that the deviation becomes substantial from the solution of linear system. We also see that the nonlinear coupling introduces significant difference in the cavity fluctuation spectrum. The description, therefore, provides a potential explanation of parametric effects in terms of nonlinear dissipation phenomena associated with the nonlinear coupling. Even though the theories developed in the context of open quantum systems have proven to be powerful tools, they do not provide a satisfactory platform to be implemented on non-linear Hamiltonians. We often approximate it by linearizing over nonlinear steady state field amplitude, and therefore, the interesting effects are often overlooked. The limitation of the analytics provokes us to simulate open quantum dynamics numerically. The numerical method consists of transformation of the environmental degrees of freedom to a one-dimensional many-body chain, and the computational technique includes numerical diagonalization and renormalization process. The time-adaptive density matrix renormalisation group (t-DMRG) is known as one of the most powerful techniques for the simulation of strongly-correlated many-body quantum systems. In this thesis, along with the theoretical modeling, we implement DMRG numerical scheme for the simulation of canonical S/B model by mapping it to one-dimensional harmonic chain with nearest neighbor interactions, and use the method to investigate the dynamics of the free dissipative system. The thermalization of open quantum systems is also studied by generating minimally entangled typical thermal states (METTS) through imaginary time evolution, and real-time evolving an empty system in the presence of the thermal bath. Further, we simulate coherently driven free dissipative Kerr nonlinear system numerically using Euler's method by solving Heisenberg equation of motion and t-DMRG algorithm, and demonstrate how the numerical results are analogous to classical bistability. By comparing with analytics, we see that the DMRG numerics is analogous to the quantum-mechanical exact solution obtained by mapping the equation of motion of the density matrix of the system to a Fokker-Plank equation. The comparison between two different numerical techniques shows that the semi-classical Euler's method determines the dynamics of the system field of one among two coherent branches, whereas DMRG numerics gives the superposition of both of them. Hence, DMRG-determined time dynamics undergoes generating non-classical states. Our approach of dealing with nonlinearity represents an important contribution in the developments of technique to study the dynamical and steady-state behavior of open quantum systems, which is a fundamental aspect of quantum physics. ...
ISBN
978-951-39-8149-5
Contains publications
  • Artikkeli I: Manninen, Juuso; Agasti, Souvik; Massel, Francesco (2017). Nonlinear quantum Langevin equations for bosonic modes in solid-state systems. Physical Review A, 96 (6), 063830. DOI: 10.1103/PhysRevA.96.063830
  • Artikkeli I: Agasti, Souvik (2019). Numerical simulation of Kerr nonlinear systems : analyzing non-classical dynamics. Journal of Physics Communications, 3 (10), 105004. DOI: 10.1088/2399-6528/ab4690
  • Artikkeli III: Agasti, Souvik (2020). Simulation of Matrix Product States For Dissipation and Thermalization Dynamics of Open Quantum Systems. Journal of Physics Communications, 4 (1), 015002. DOI: 10.1088/2399-6528/ab6141
  • Artikkeli IV: Agasti, Souvik (2020). Numerical simulation of free dissipative open quantum system and establishment of a formula for π. In Shekhawat, Manoj Singh; Bhardwaj, Sudhir; Suthar, Bhuvneshwer (Eds.) ICC-2019 : 3rd International Conference on Condensed Matter and Applied Physics, AIP Conference Proceedings, 2220. American Institute of Physics, 130010. DOI: 10.1063/5.0001282. JYX: jyx.jyu.fi/handle/123456789/68859.
Keywords
kvanttifysiikka kvanttimekaniikka numeeriset menetelmät differentiaaliyhtälöt Markovin ketjut simulointi
URI

http://urn.fi/URN:ISBN:978-951-39-8149-5

Metadata
Show full item record
Collections
  • Väitöskirjat [3178]

Related items

Showing items with similar title or keywords.

  • Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance 

    Franks, Jordan; Vihola, Matti (Elsevier, 2020)
    We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent ...
  • Spectral analysis and quantum chaos in two-dimensional nanostructures 

    Luukko, Perttu (University of Jyväskylä, 2015)
    This thesis describes a study into the eigenvalues and eigenstates of twodimensional (2D) quantum systems. The research is summarized in four scientific publications by the author. The underlying motivation for this work ...
  • Localization and dimension estimation of attractors in the Glukhovsky-Dolzhansky system 

    Mokaev, Timur (University of Jyväskylä, 2016)
  • Systematisation of Systems Solving Physics Boundary Value Problems 

    Rossi, Tuomo; Räbinä, Jukka; Mönkölä, Sanna; Kiiskinen, Sampsa; Lohi, Jonni; Kettunen, Lauri (Springer, 2021)
    A general conservation law that defines a class of physical field theories is constructed. First, the notion of a general field is introduced as a formal sum of differential forms on a Minkowski manifold. By the action ...
  • Application of time-dependent many-body perturbation theory to excitation spectra of selected finite model systems 

    Säkkinen, Niko (University of Jyväskylä, 2016)
    In this thesis, an approximate method introduced to solve time-dependent many-body problems known as time-dependent many-body perturbation theory is studied. Many-body perturbation theory for interacting electrons and ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre