Spatio-temporal Dynamical Analysis of Brain Activity during Mental Fatigue Process
Zhang, C., Sun, L., Cong, F., & Ristaniemi, T. (2021). Spatio-temporal Dynamical Analysis of Brain Activity during Mental Fatigue Process. IEEE Transactions on Cognitive and Developmental Systems, 13(3), 593-606. https://doi.org/10.1109/TCDS.2020.2976610
Julkaistu sarjassa
IEEE Transactions on Cognitive and Developmental SystemsPäivämäärä
2021Tekijänoikeudet
© Copyright 2020 IEEE
Mental fatigue is a common phenomenon with implicit and multidimensional properties. It brings dynamic changes of functional brain networks. However, the challenging problem of false positives appears when the connectivity is estimated by Electroencephalography (EEG). In this paper, we propose a novel framework based on spatial clustering to explore the sources of mental fatigue and functional activity changes caused by them. To suppress the false positive observations, spatial clustering is implemented in brain networks. The nodes extracted by spatial clustering are registered back to functional magnetic resonance imaging (fMRI) source space to determined the sources of mental fatigue. The wavelet entropy of EEG in a sliding window is calculated to find the temporal features of mental fatigue. Our experimental results show that the extracted nodes correspond to the fMRI sources across different subjects and different tasks. The entropy values on the extracted nodes demonstrate clearer staged decreasing changes (deactivation). Additionally, the synchronization among the extracted nodes is stronger than that among all the nodes in the deactivation stage. The initial time of the strong synchronized deactivation is consistent with the subjective fatigue time reported by the subjects themselves. It means the synchronization and deactivation corresponds to the subjective feelings of fatigue. Therefore, this functional activity pattern may be caused by the sources of mental fatigue. The proposed framework is useful for a wide range of prolonged functional imaging and fatigue detection studies.
...
Julkaisija
IEEEISSN Hae Julkaisufoorumista
2379-8920Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/34761427
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
We gratefully acknowledge the financial support from the National Natural Science Foundation of China (grant number: 61703069) and the Fundamental Research Funds for the Central Universities (grant number: DUT18RC(4)035).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data
Hu, Guoqiang; Li, Huanjie; Zhao, Wei; Hao, Yuxing; Bai, Zonglei; Nickerson, Lisa D.; Cong, Fengyu (Elsevier, 2022)The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component ... -
Snowball ICA : A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging Data
Hu, Guoqiang; Waters, Abigail B.; Aslan, Serdar; Frederick, Blaise; Cong, Fengyu; Nickerson, Lisa D. (Frontiers Media, 2020)In independent component analysis (ICA), the selection of model order (i.e., number of components to be extracted) has crucial effects on functional magnetic resonance imaging (fMRI) brain network analysis. Model order ... -
Statistical inference for eye movement sequences using spatial and spatio-temporal point processes
Ylitalo, Anna-Kaisa (University of Jyväskylä, 2017)Eye tracking is a widely used method for recording eye movements, which are important indicators of ongoing cognitive processes during the viewing of a target stimulus. Despite the variety of applications, the analyses ... -
Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition
Hu, Guoqiang; Zhang, Qing; Waters, Abigail B.; Li, Huanjie; Zhang, Chi; Wu, Jianlin; Cong, Fengyu; Nickerson, Lisa D. (Elsevier BV, 2019)Background. Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) ... -
Harmonization of multi-site functional MRI data with dual-projection based ICA model
Xu, Huashuai; Hao, Yuxing; Zhang, Yunge; Zhou, Dongyue; Kärkkäinen, Tommi; Nickerson, Lisa D.; Li, Huanjie; Cong, Fengyu (Frontiers Media SA, 2023)Modern neuroimaging studies frequently merge magnetic resonance imaging (MRI) data from multiple sites. A larger and more diverse group of participants can increase the statistical power, enhance the reliability and ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.