Conformal equivalence of visual metrics in pseudoconvex domains
Capogna, L., & Le Donne, E. (2020). Conformal equivalence of visual metrics in pseudoconvex domains. Mathematische Annalen, 377(3-4), 1643-1672. https://doi.org/10.1007/s00208-020-01968-9
Published in
Mathematische AnnalenDate
2020Discipline
Geometrinen analyysi ja matemaattinen fysiikkaMatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköGeometric Analysis and Mathematical PhysicsMathematicsAnalysis and Dynamics Research (Centre of Excellence)Copyright
© Authors, 2020
We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between bounded, smooth strongly pseudoconvex domains in Cn are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between bounded smooth pseudoconvex domains. The proofs are inspired by Mostow’s proof of his rigidity theorem and are based on the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the Bonk-Schramm hyperbolic fillings.
Publisher
SpringerISSN Search the Publication Forum
0025-5831Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/34733239
Metadata
Show full item recordCollections
Additional information about funding
Open access funding provided by University of Jyväskylä (JYU).License
Related items
Showing items with similar title or keywords.
-
Equivalent Definitions of Very Strict CD(K,N) -spaces
Schultz, Timo (Springer, 2023)We show the equivalence of the definitions of very strict CD(K,N) -condition defined, on one hand, using (only) the entropy functionals, and on the other, the full displacement convexity class DCN. In particular, we show ... -
Riemann surfaces and Teichmüller theory
Ikonen, Toni (2017)Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen ... -
Metric equivalences of Heintze groups and applications to classifications in low dimension
Kivioja, Ville; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Duke University Press, 2022)We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between ... -
Limiting Carleman weights and conformally transversally anisotropic manifolds
Angulo, Pablo; Faraco, Daniel; Guijarro, Luis; Salo, Mikko (American Mathematical Society, 2020)We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, $ 3$-manifolds, and $ 4$-manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman ... -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ...