Show simple item record

dc.contributor.authorSachkov, Yuri L.
dc.date.accessioned2020-02-25T10:07:29Z
dc.date.available2020-02-25T10:07:29Z
dc.date.issued2020
dc.identifier.citationSachkov, Y. L. (2020). Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems. <i>Regular and Chaotic Dynamics</i>, <i>25</i>(1), 33-39. <a href="https://doi.org/10.1134/S1560354720010050" target="_blank">https://doi.org/10.1134/S1560354720010050</a>
dc.identifier.otherCONVID_34633851
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67952
dc.description.abstractWe consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on the dual of the Lie algebra. In the case of rank 3 Lie groups we describe the symplectic foliation on the dual of the Lie algebra. On this basis we show that extremal controls are either constant or periodic. Some related results for other Carnot groups are presented.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherPleiades Publishing
dc.relation.ispartofseriesRegular and Chaotic Dynamics
dc.rightsIn Copyright
dc.subject.otheroptimal control
dc.subject.othersub-Finsler geometry
dc.subject.otherLie groups
dc.subject.otherPontryagin maximum principle
dc.titlePeriodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202002252180
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange33-39
dc.relation.issn1560-3547
dc.relation.numberinseries1
dc.relation.volume25
dc.type.versionacceptedVersion
dc.rights.copyright© Pleiades Publishing, Ltd., 2020.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysovariaatiolaskenta
dc.subject.ysomatemaattinen optimointi
dc.subject.ysodifferentiaaligeometria
dc.subject.ysosäätöteoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p11197
jyx.subject.urihttp://www.yso.fi/onto/yso/p17635
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p868
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1134/S1560354720010050
dc.relation.funderEuroopan komissiofi
dc.relation.funderEuropean Commissionen
jyx.fundingprogramERC Starting Grantfi
jyx.fundingprogramERC Starting Granten
jyx.fundinginformationSections 1–3 of this work were supported by the Academy of Finland (grant 277923) and by the European Research Council (ERC Starting Grant 713998 GeoMeG). Sections 4–6 of this work were supported by the Russian Science Foundation under grant 17-11-01387 and performed at the Ailamazyan Program Systems Institute of Russian Academy of Sciences.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright