Näytä suppeat kuvailutiedot

dc.contributor.authorCao, LiAo
dc.contributor.authorMattelaer, Felix
dc.contributor.authorSajavaara, Timo
dc.contributor.authorDendooven, Jolien
dc.contributor.authorDetavernier, Christophe
dc.date.accessioned2020-02-25T08:22:22Z
dc.date.available2020-02-25T08:22:22Z
dc.date.issued2020
dc.identifier.citationCao, L., Mattelaer, F., Sajavaara, T., Dendooven, J., & Detavernier, C. (2020). A liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films. <i>Journal of Vacuum Science and Technology A</i>, <i>38</i>(2), Article 022417. <a href="https://doi.org/10.1116/1.5139631" target="_blank">https://doi.org/10.1116/1.5139631</a>
dc.identifier.otherCONVID_34696254
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67941
dc.description.abstractFor large-scale atomic layer deposition (ALD) of alumina, the most commonly used alkyl precursor trimethylaluminum poses safety issues due to its pyrophoric nature. In this work, the authors have investigated a liquid alkoxide, aluminum tri-sec-butoxide (ATSB), as a precursor for ALD deposition of alumina. ATSB is thermally stable and the liquid nature facilitates handling in a bubbler and potentially enables liquid injection toward upscaling. Both thermal and plasma enhanced ALD processes are investigated in a vacuum type reactor by using water, oxygen plasma, and water plasma as coreactants. All processes achieved ALD deposition at a growth rate of 1–1.4 Å/cycle for substrate temperatures ranging from 100 to 200 °C. Film morphology, surface roughness, and composition have been studied with different characterization techniques.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesJournal of Vacuum Science and Technology A
dc.rightsIn Copyright
dc.subject.otherplasma processing
dc.subject.otheratomic layer deposition
dc.titleA liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202002252169
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0734-2101
dc.relation.numberinseries2
dc.relation.volume38
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 Author(s)
dc.rights.accesslevelopenAccessfi
dc.subject.ysoatomikerroskasvatus
dc.subject.ysoohutkalvot
dc.subject.ysoalumiini
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27468
jyx.subject.urihttp://www.yso.fi/onto/yso/p16644
jyx.subject.urihttp://www.yso.fi/onto/yso/p19563
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1116/1.5139631
jyx.fundinginformationThis work was supported by the M-ERA CALDERA project and the Fund for Scientific Research Flanders (FWO). Jolien Dendooven acknowledges the FWO for a postdoctoral fellowship.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright