Näytä suppeat kuvailutiedot

dc.contributor.authorAdamowicz, Tomasz
dc.contributor.authorFässler, Katrin
dc.contributor.authorWarhurst, Ben
dc.date.accessioned2020-02-19T09:33:17Z
dc.date.available2020-02-19T09:33:17Z
dc.date.issued2020
dc.identifier.citationAdamowicz, T., Fässler, K., & Warhurst, B. (2020). A Koebe distortion theorem for quasiconformal mappings in the Heisenberg group. <i>Annali di Matematica Pura ed Applicata</i>, <i>199</i>(1), 147-186. <a href="https://doi.org/10.1007/s10231-019-00871-8" target="_blank">https://doi.org/10.1007/s10231-019-00871-8</a>
dc.identifier.otherCONVID_30874132
dc.identifier.otherTUTKAID_81537
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67879
dc.description.abstractWe prove a Koebe distortion theorem for the average derivative of a quasiconformal mapping between domains in the sub-Riemannian Heisenberg group H1. Several auxiliary properties of quasiconformal mappings between subdomains of H1 are proven, including BMO estimates for the logarithm of the Jacobian. Applications of the Koebe theorem include diameter bounds for images of curves, comparison of integrals of the average derivative and the operator norm of the horizontal differential, as well as the study of quasiconformal densities and metrics in domains in H1. The theorems are discussed for the sub-Riemannian and the Korányi distances. This extends results due to Astala–Gehring, Astala–Koskela, Koskela and Bonk–Koskela–Rohde.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesAnnali di Matematica Pura ed Applicata
dc.rightsCC BY 4.0
dc.subject.otherKvasikonformikuvaus
dc.subject.otherHeisenbergin ryhmä
dc.subject.otherKoebe distortion theorem
dc.subject.otherQuasiconformal mapping
dc.subject.otherHeisenberg group
dc.titleA Koebe distortion theorem for quasiconformal mappings in the Heisenberg group
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202002182091
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2020-02-18T07:15:12Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange147-186
dc.relation.issn0373-3114
dc.relation.numberinseries1
dc.relation.volume199
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 the Author(s)
dc.rights.accesslevelopenAccessfi
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10231-019-00871-8
jyx.fundinginformationOpen access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0