Physical Activity Predicts Population-Level Age-Related Differences in Frontal White Matter

Abstract
Physical activity has positive effects on brain health and cognitive function throughout the life span. Thus far, few studies have examined the effects of physical activity on white matter microstructure and psychomotor speed within the same, population-based sample (critical if conclusions are to extend to the wider population). Here, using diffusion tensor imaging and a simple reaction time task within a relatively large population-derived sample (N = 399; 18–87 years) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN), we demonstrate that physical activity mediates the effect of age on white matter integrity, measured with fractional anisotropy. Higher self-reported daily physical activity was associated with greater preservation of white matter in several frontal tracts, including the genu of corpus callosum, uncinate fasciculus, external capsule, and anterior limb of the internal capsule. We also show that the age-related slowing is mediated by white matter integrity in the genu. Our findings contribute to a growing body of work, suggesting that a physically active lifestyle may protect against age-related structural disconnection and slowing.
Main Authors
Format
Articles Research article
Published
2020
Series
Subjects
Publication in research information system
Publisher
Oxford University Press; The Gerontological Society of America
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202002031951Käytä tätä linkitykseen.
Review status
Peer reviewed
ISSN
1079-5006
DOI
https://doi.org/10.1093/gerona/gly220
Language
English
Published in
Journals of Gerontology Series A: Biological Sciences and Medical Sciences
Citation
  • Strömmer, J., Davis, S. W., Henson, R. N., Tyler, L. K., Consortium, C. C. F. A. A. N., & Campbell, K. L. (2020). Physical Activity Predicts Population-Level Age-Related Differences in Frontal White Matter. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 75(2), 236-243. https://doi.org/10.1093/gerona/gly220
License
CC BY 4.0Open Access
Additional information about funding
This work was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1).
Copyright© 2018 the Author(s)

Share