On the uniqueness of a solution and stability of McKean-Vlasov stochastic differential equations
Abstract
Tässä tutkielmassa tutustutaan McKeanin-Vlasovin stokastisiin differentiaaliyhtälöihin, jotka yleistävät tavalliset stokastiset differentiaaliyhtälöt lisäämällä kerroinfunktioihin riippuvuuden tuntemattoman prosessin jakaumasta tietyllä ajanhetkellä. Pääasiallisena lähteenä seurataan K. Bahlalin, M. Mezerdin ja B. Mezerdin artikkelia \textit{Stability of Mckean-Vlasov stochastic differential equations and applications}.
Tutkielmassa käydään läpi tarvittavia esitietoja todennäköisyysteoriasta ja tavallisista stokastisista differentiaaliyhtälöistä. Kerroinfunktioiden jatkuvuuden ja mitallisuuden määrittämiseksi esitellään Wassersteinin etäisyys, joka on metriikka äärellismomenttisten reaaliavaruuden todennäköisyysmittojen avaruudessa. Metriikan avulla saadaan yleistettyä lause, joka takaa ratkaisun olemassaolon ja yksikäsitteisyyden, kun kerroinfunktiot ovat Lipschitz-jatkuvia ja toteuttavat lineaarisen kasvuehdon. Lisäksi osoitetaan, että yksikäsitteisyys on voimassa eräällä Lipschitz-jatkuvuutta heikommalla ehdolla.
Numeerisessa ratkaisemisessa voidaan hyödyntää tulosta, jossa konstruoidaan iteroitu jono prosesseja, jotka suppenevat kohti yksikäsitteistä ratkaisua. Lopuksi tarkastellaan ratkaisuprosessien stabiiliutta erikseen alkuarvon, kerroinfunktioiden ja integroivan prosessin suhteen.
In this thesis we introduce McKean-Vlasov stochastic differential equations, which are a generalization of ordinary stochastic differential equations, but now the coefficients depend on the distribution of the unknown process. In our main results we follow K. Bahlali, M. Mezerdi and B. Mezerdi's article \textit{Stability of Mckean-Vlasov stochastic differential equations and applications}. We start by giving preliminary theory required to understand our main results. To define continuity and measurability of the coefficient functions, we introduce the Wasserstein distance, which is a metric in the space of probability measures on the real line with finite moments. With the metric we generalize a theorem that states that a unique solution exists provided that the coefficients are Lipschitz continuous and satisfy the linear growth condition. In addition we show that in a specific case the uniqueness holds even if the coefficients satisfy a condition weaker than Lipschitz continuity. In numerics one can use a result that provides a way to approximate the solution with a sequence of iterated processes converging to the unique solution. In the last part we consider stability of the solution with respect to the initial value, the coefficients and the driving process.
In this thesis we introduce McKean-Vlasov stochastic differential equations, which are a generalization of ordinary stochastic differential equations, but now the coefficients depend on the distribution of the unknown process. In our main results we follow K. Bahlali, M. Mezerdi and B. Mezerdi's article \textit{Stability of Mckean-Vlasov stochastic differential equations and applications}. We start by giving preliminary theory required to understand our main results. To define continuity and measurability of the coefficient functions, we introduce the Wasserstein distance, which is a metric in the space of probability measures on the real line with finite moments. With the metric we generalize a theorem that states that a unique solution exists provided that the coefficients are Lipschitz continuous and satisfy the linear growth condition. In addition we show that in a specific case the uniqueness holds even if the coefficients satisfy a condition weaker than Lipschitz continuity. In numerics one can use a result that provides a way to approximate the solution with a sequence of iterated processes converging to the unique solution. In the last part we consider stability of the solution with respect to the initial value, the coefficients and the driving process.
Main Author
Format
Theses
Master thesis
Published
2020
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202001241782Use this for linking
Language
English