dc.contributor.author | Tikka, Santtu | |
dc.contributor.author | Hyttinen, Antti | |
dc.contributor.author | Karvanen, Juha | |
dc.contributor.editor | Wallach, H. | |
dc.contributor.editor | Larochelle, H. | |
dc.contributor.editor | Beygelzimer, A. | |
dc.contributor.editor | d'Alché-Buc, F. | |
dc.contributor.editor | Fox, E. | |
dc.contributor.editor | Garnett, R. | |
dc.date.accessioned | 2020-01-14T12:46:04Z | |
dc.date.available | 2020-01-14T12:46:04Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Tikka, S., Hyttinen, A., & Karvanen, J. (2019). Identifying Causal Effects via Context-specific Independence Relations. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), <i>NeurIPS 2019 : Proceedings of the 33rd Conference on Neural Information Processing Systems</i>. Neural Information Processing Systems Foundation, Inc.. <a href="https://papers.nips.cc/paper/8547-identifying-causal-effects-via-context-specific-independence-relations" target="_blank">https://papers.nips.cc/paper/8547-identifying-causal-effects-via-context-specific-independence-relations</a> | |
dc.identifier.other | CONVID_34057592 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/67291 | |
dc.description.abstract | Causal effect identification considers whether an interventional probability distribution can be uniquely determined from a passively observed distribution in a given causal structure. If the generating system induces context-specific independence (CSI) relations, the existing identification procedures and criteria based on do-calculus are inherently incomplete. We show that deciding causal effect non-identifiability is NP-hard in the presence of CSIs. Motivated by this, we design a calculus and an automated search procedure for identifying causal effects in the presence of CSIs. The approach is provably sound and it includes standard do-calculus as a special case. With the approach we can obtain identifying formulas that were unobtainable previously, and demonstrate that a small number of CSI-relations may be sufficient to turn a previously non-identifiable instance to identifiable. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Neural Information Processing Systems Foundation, Inc. | |
dc.relation.ispartof | NeurIPS 2019 : Proceedings of the 33rd Conference on Neural Information Processing Systems | |
dc.relation.uri | https://papers.nips.cc/paper/8547-identifying-causal-effects-via-context-specific-independence-relations | |
dc.rights | In Copyright | |
dc.subject.other | causal effect identification | |
dc.subject.other | context-specific independence relations | |
dc.title | Identifying Causal Effects via Context-specific Independence Relations | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202001141244 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Tilastotiede | fi |
dc.contributor.oppiaine | Statistics | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1049-5258 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 Neural Information Processing Systems Foundation, Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | Advances in neural information processing systems | |
dc.relation.grantnumber | 311877 | |
dc.subject.yso | kausaliteetti | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p333 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundinginformation | ST was supported by Academy of Finland grant 311877 (Decision analytics utilizing causal models
and multiobjective optimization). AH was supported by Academy of Finland grant 295673. | |
dc.type.okm | A4 | |