Show simple item record

dc.contributor.authorTikka, Santtu
dc.contributor.authorHyttinen, Antti
dc.contributor.authorKarvanen, Juha
dc.contributor.editorWallach, H.
dc.contributor.editorLarochelle, H.
dc.contributor.editorBeygelzimer, A.
dc.contributor.editord'Alché-Buc, F.
dc.contributor.editorFox, E.
dc.contributor.editorGarnett, R.
dc.date.accessioned2020-01-14T12:46:04Z
dc.date.available2020-01-14T12:46:04Z
dc.date.issued2019
dc.identifier.citationTikka, S., Hyttinen, A., & Karvanen, J. (2019). Identifying Causal Effects via Context-specific Independence Relations. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), <i>NeurIPS 2019 : Proceedings of the 33rd Conference on Neural Information Processing Systems</i>. Neural Information Processing Systems Foundation, Inc.. <a href="https://papers.nips.cc/paper/8547-identifying-causal-effects-via-context-specific-independence-relations" target="_blank">https://papers.nips.cc/paper/8547-identifying-causal-effects-via-context-specific-independence-relations</a>
dc.identifier.otherCONVID_34057592
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67291
dc.description.abstractCausal effect identification considers whether an interventional probability distribution can be uniquely determined from a passively observed distribution in a given causal structure. If the generating system induces context-specific independence (CSI) relations, the existing identification procedures and criteria based on do-calculus are inherently incomplete. We show that deciding causal effect non-identifiability is NP-hard in the presence of CSIs. Motivated by this, we design a calculus and an automated search procedure for identifying causal effects in the presence of CSIs. The approach is provably sound and it includes standard do-calculus as a special case. With the approach we can obtain identifying formulas that were unobtainable previously, and demonstrate that a small number of CSI-relations may be sufficient to turn a previously non-identifiable instance to identifiable.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherNeural Information Processing Systems Foundation, Inc.
dc.relation.ispartofNeurIPS 2019 : Proceedings of the 33rd Conference on Neural Information Processing Systems
dc.relation.urihttps://papers.nips.cc/paper/8547-identifying-causal-effects-via-context-specific-independence-relations
dc.rightsIn Copyright
dc.subject.othercausal effect identification
dc.subject.othercontext-specific independence relations
dc.titleIdentifying Causal Effects via Context-specific Independence Relations
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202001141244
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineTilastotiedefi
dc.contributor.oppiaineStatisticsen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.relation.issn1049-5258
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Neural Information Processing Systems Foundation, Inc.
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceAdvances in neural information processing systems
dc.relation.grantnumber311877
dc.subject.ysokausaliteetti
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p333
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationST was supported by Academy of Finland grant 311877 (Decision analytics utilizing causal models and multiobjective optimization). AH was supported by Academy of Finland grant 295673.
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright