Harmonic Balance Method and Stability of Discontinuous Systems
Kudryashova, E. V., Kuznetsov, N., Kuznetsova, O. A., Leonov, G. A., & Mokaev, T. (2019). Harmonic Balance Method and Stability of Discontinuous Systems. In V. P. Matveenko, M. Krommer, A. K. Belyaev, & H. Irschik (Eds.), Dynamics and Control of Advanced Structures and Machines : Contributions from the 3rd International Workshop, Perm, Russia (pp. 99-107). Springer. https://doi.org/10.1007/978-3-319-90884-7_11
Päivämäärä
2019Tekijänoikeudet
© Springer Nature Switzerland AG 2019
The development of the theory of discontinuous dynamical systems and
differential inclusions was not only due to research in the field of abstract mathematics but also a result of studies of particular problems in mechanics. One of first
methods, used for the analysis of dynamics in discontinuous mechanical systems,
was the harmonic balance method developed in the thirties of the 20th century. In
our work the results of analysis obtained by the method of harmonic balance, which
is an approximate method, are compared with the results obtained by rigorous mathematical methods and numerical simulation.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-319-90883-0Kuuluu julkaisuun
Dynamics and Control of Advanced Structures and Machines : Contributions from the 3rd International Workshop, Perm, RussiaAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28969006
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Time-delay control for stabilization of the Shapovalov mid-size firm model
Alexeeva, T.A.; Barnett, W.A.; Kuznetsov, N.V.; Mokaev, T.N. (Elsevier, 2020)Control and stabilization of irregular and unstable behavior of dynamic systems (including chaotic processes) are interdisciplinary problems of interest to a variety of scientific fields and applications. Using the control ... -
The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension
Kuznetsov, N. V.; Mokaev, T. N.; Kuznetsova, O. A.; Kudryashova, E. V. (Springer, 2020)On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global ... -
Existence of homoclinic orbits and heteroclinic cycle in a class of three-dimensional piecewise linear systems with three switching manifolds
Zhu, Bin; Wei, Zhouchao; Escalante-González, R.J.; Kuznetsov, Nikolay V. (American Institute of Physics, 2020)In this article, we construct a kind of three-dimensional piecewise linear (PWL) system with three switching manifolds and obtain four theorems with regard to the existence of a homoclinic orbit and a heteroclinic cycle ... -
Numerical analysis of dynamical systems : unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimension
Kuznetsov, Nikolay; Mokaev, Timur (IOP Publishing, 2019)In this article, on the example of the known low-order dynamical models, namely Lorenz, Rössler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz ... -
Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system
Danca, Marius-F.; Fečkan, Michal; Kuznetsov, Nikolay; Chen, Guanrong (Springer, 2018)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.