Energy conversion efficiency in betavoltaic cells based on the diamond Schottky diode with a thin drift layer

Abstract
The HPHT diamond Schottky diode was assembled as a Metal/Intrinsic/p-doped structure betavoltaic cell (BC) with a very thin (1 μm) drift layer and tested under 5–30 keV electron beam irradiation using a scanning electron microscope (SEM). The effect of the β-radiation energy and the backscattering of electrons on the energy conversion was studied. From the results obtained, it is shown that, the efficiency of the investigated BC increases from 1.01 to 3.75% with the decrease of β-particle energy from 30 to 5 keV due to an increase of the electron beam absorption in a thin drift layer. Maximum efficiency is achieved when the electron beam energy is close to the average β-decay energy of 3H. The BC maximum output power of the 1.6 μW was obtained at an electron beam energy of 15 keV, that matches the β-decay energy of 63Ni. The total BC conversion efficiency at 15 keV electron-beam energy is about 3%. The calculations indicated that a preferable β-source for the diamond based BCs with a thin (1 μm) drift layer is 63Ni.
Main Authors
Format
Articles Research article
Published
2020
Series
Subjects
Publication in research information system
Publisher
Elsevier Ltd
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201912315527Use this for linking
Review status
Peer reviewed
ISSN
0969-8043
DOI
https://doi.org/10.1016/j.apradiso.2019.109017
Language
English
Published in
Applied Radiation and Isotopes
Citation
  • Grushko, V., Beliuskina, O., Mamalis, A., Lysakovskiy, V., Mitskevich, E., Kiriev, A., Petrosyan, E., Chaplynskyi, R., Bezshyyko, O., & Lysenko, O. (2020). Energy conversion efficiency in betavoltaic cells based on the diamond Schottky diode with a thin drift layer. Applied Radiation and Isotopes, 157, Article 109017. https://doi.org/10.1016/j.apradiso.2019.109017
License
CC BY-NC-ND 4.0Open Access
Copyright© Elsevier Ltd. 2019

Share