Removal of molecular contamination in low-energy RIBs by the isolation-dissociation-isolation method
Greiner, F., Dickel, T., Andrés, S. A. S., Bergmann, J., Constantin, P., Ebert, J., Geissel, H., Haettner, E., Hornung, C., Miskun, I., Lippert, W., Mardor, I., Moore, I., Plaß, W. R., Purushothaman, S., Rink, A.-K., Reiter, M. P., Scheidenberger, C., & Weick, H. (2020). Removal of molecular contamination in low-energy RIBs by the isolation-dissociation-isolation method. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 463, 324-326. https://doi.org/10.1016/j.nimb.2019.04.072
Published in
Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and AtomsAuthors
Date
2020Copyright
© 2019 The Authors
Experiments with low-energy rare ion beams often suffer from a large amount of molecular contaminant ions.
We present the simple isolation-dissociation-isolation method to suppress this kind of contamination. The
method can be applied to almost all types of low-energy beamlines. In a first step, a coarse isolation of the massto-charge ratio of interest is performed, e.g. by a dipole magnet. In a second step, the ions are dissociated. The
last step is again a coarse isolation of the mass-to-charge ratio around the ion of interest. The method was tested
at the FRS Ion Catcher at GSI with a radioactive ion source installed inside the cryogenic stopping cell as well as
with relativistic ions delivered by the synchrotron SIS-18 and stopped in the cryogenic stopping cell. The isolation and dissociation, here collision-induced dissociation, have been implemented in a gas-filled RFQ beamline. A reduction of molecular contamination by more than 4 orders of magnitude was achieved.
Publisher
Elsevier BVISSN Search the Publication Forum
0168-583XKeywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/30675043
Metadata
Show full item recordCollections
Additional information about funding
This work was supported by the German Federal Ministry for Education and Research (BMBF) under contracts No. 05P19RGFN1, 05P12RGFN8 and 05P15RGFN1, by Justus Liebig University Gießen and GSI under the JLU-GSI strategic Helmholtz partnership agreement, by HGS-HIRe, and by the Hessian Ministry for Science and Art (HMWK) through the LOEWE Center HICforFAIR. PC is supported by ELI-NP Phase II (1/07.07.2016, COP, ID 1334). ...License
Related items
Showing items with similar title or keywords.
-
Status and development of the MARA low-energy branch
Papadakis, Philippos; Moore, Iain; Eronen, Tommi; Liimatainen, J.; Kalvas, Taneli; Partanen, Jari; Pohjalainen, Ilkka; Reponen, Mikael; Rinta-Antila, Sami; Sarén, Jan; Uusitalo, Juha (AIP Publishing, 2018)The MARA Low-Energy Branch is under development at the Accelerator Laboratory of the University of Jyvaskylä. The facility will be employed for laser ionisation and spectroscopy studies and for mass measurements of nuclei ... -
Offline commissioning of a new gas cell for the MARA Low-Energy Branch
Zadvornaya, A.; Romero, J.; Eronen, T.; Gins, W.; Kankainen, A.; Moore, I. D.; Papadakis, P.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; Sarén, J.; Simonovski, D.; Uusitalo, J. (Elsevier, 2023)Results of offline commissioning tests for a new dedicated gas cell for the Mass Analysing Recoil Apparatus (MARA) Low-Energy Branch are reported. Evacuation time, ion survival and transport efficiency in helium buffer ... -
First Offline Results from the S3 Low-Energy Branch
Romans, Jekabs; Ajayakumar, Anjali; Authier, Martial; Boumard, Frederic; Caceres, Lucia; Cam, Jean-François; Claessens, Arno; Damoy, Samuel; Delahaye, Pierre; Desrues, Philippe; Drouart, Antoine; Duchesne, Patricia; Ferrer, Rafael; Fléchard, Xavier; Franchoo, Serge; Gangnant, Patrice; de Groote, Ruben P.; Kraemer, Sandro; Lecesne, Nathalie; Leroy, Renan; Lory, Julien; Lutton, Franck; Manea, Vladimir; Merrer, Yvan; Moore, Iain; Ortiz-Cortes, Alejandro; Osmond, Benoit; Piot, Julien; Pochon, Olivier; Retailleau, Blaise-Maël; Savajols, Hervé; Sels, Simon; Traykov, Emil; Uusitalo, Juha; Vandamme, Christophe; Vandebrouck, Marine; Van den Bergh, Paul; Van Duppen, Piet; Verlinde, Matthias; Verstraelen, Elise; Wendt, Klaus (MDPI AG, 2022)We present the first results obtained from the S3 Low-Energy Branch, the gas cell setup at SPIRAL2-GANIL, which will be installed behind the S3 spectrometer for atomic and nuclear spectroscopy studies of exotic nuclei. The ... -
Molecular pathways mediating immunosuppression in response to prolonged intensive physical training, low-energy availability, and intensive weight loss
Sarin, Heikki V.; Gudelj, Ivan; Honkanen, Jarno; Ihalainen, Johanna; Vuorela, Arja; Lee, Joseph H.; Jin, Zhenzhen; Terwilliger, Joseph D.; Isola, Ville; Ahtiainen, Juha; Häkkinen, Keijo; Juric, Julija; Lauc, Gordan; Kristiansson, Kati; Hulmi, Juha; Perola, Markus (Frontiers Research Foundation, 2019)Exercise and exercise-induced weight loss have a beneficial effect on overall health, including positive effects on molecular pathways associated with immune function, especially in overweight individuals. The main aim of ... -
High-energy dipole scattering amplitude from evolution of low-energy proton light-cone wave functions
Dumitru, Adrian; Mäntysaari, Heikki; Paatelainen, Risto (American Physical Society (APS), 2023)The forward scattering amplitude of a small dipole at high energies is given in the mean field approximation by the Balitsky-Kovchegov (BK) evolution equation. It requires an initial condition N(r;x0) describing the ...