Show simple item record

dc.contributor.authorSokołowska, Karolina
dc.date.accessioned2019-11-28T08:23:29Z
dc.date.available2019-11-28T08:23:29Z
dc.date.issued2019
dc.identifier.isbn978-951-39-7966-9
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66555
dc.description.abstractThe development of gold nanoclusters has made remarkable progress enriching the research field of nanomaterial science. The breakthroughs in synthetic chemistry enable the preparation of functional materials using gold nanoclusters. The assembly of gold nanoclusters into well-defined structures creates a system with new optical and electronic properties and functionalities, often sensitive to single atom or single electron in the system. Assembly of superstructures with molecular precision requires not only mastering the size and structural uniformities of building blocks but also understanding reaction kinetics and the interplay between competing reaction mechanisms. In the light of this, a robust synthesis of covalently linked nanoscale constructs from gold nanoclusters with atomically precise structures was developed, using common thiolation chemistry. The generality of the synthesis was proven by using various molecules connecting the particles, producing in high yield a large number of geometrical structures of linked gold clusters. The successful gel electrophoresis separation of dimers, trimers, and tetramers allowed detailed characterization and systematic studies of reaction mechanism of the created systems. Multimers of linked structures exhibit additional transitions in their UV-vis spectrum at 630 nm and 810 nm, indicating the presence of hybridized localized surface plasmon resonance (LSPR) modes. Nearly constant distances observed in transmission electron microscope (TEM) between singular gold clusters and the analysis of the oligomer yields supported with MD simulations suggest that gold nanoclusters are covalently bound by formation of singular molecular bridges. The molecular bridge is most likely formed by formation of an S-S bond between the terminal sulfurs of two (or more) dithiols connecting the particles. The successful disulfide bonding was also observed spectroscopically by X-ray photoelectron (XPS) and electron energy-loss spectroscopy (EELS). The scanning electron microscope (STEM) combined with EELS experiment gives spatial insight into the linked structures. The measurements confirm the molecular bridge between clusters by producing images with chemical contrast indicating the presence of molecules between particles. This achievement of making well-defined metallic nanoscale superstructures allows detailed engineering of the materials with atomic precision.en
dc.relation.ispartofseriesJYU dissertations
dc.relation.haspart<b>Artikkeli I:</b> Lahtinen, T., Hulkko, E., Sokołowska, K., Tero, T.-R., Saarnio, V., Lindgren, J., . . . Lehtovaara, L. (2016). Covalently linked multimers of gold nanoclusters Au<sub>102</sub>(p-MBA)<sub>44</sub> and Au<sub>∼250</sub>(p-MBA)<sub>n</sub>. <i>Nanoscale, 8 (44), 18665-18674.</i> <a href="https://doi.org/10.1039/C6NR05267C"target="_blank"> DOI: 10.1039/C6NR05267C</a>
dc.relation.haspart<b>Artikkeli II:</b> Sokolowska, K., Hulkko, E., Lehtovaara, L., & Lahtinen, T. (2018). Dithiol-Induced Oligomerization of Thiol-Protected Gold Nanoclusters. <i>Journal of Physical Chemistry C, 122 (23), 12524-12533.</i> <a href="https://doi.org/10.1021/acs.jpcc.8b02988"target="_blank"> DOI: 10.1021/acs.jpcc.8b02988</a>
dc.relation.haspart<b>Artikkeli III:</b> Sokolowska, K., Malola, S., Lahtinen, M., Saarnio, V., Permi, P., Koskinen, K., . . . Lahtinen, T. (2019). Towards Controlled Synthesis of Water-Soluble Gold Nanoclusters : Synthesis and Analysis. <i>The Journal of Physical Chemistry C, 123 (4), 2602-2612.</i> <a href="https://doi.org/10.1021/acs.jpcc.8b11056"target="_blank"> DOI: 10.1021/acs.jpcc.8b11056</a>
dc.relation.haspart<b>Artikkeli IV:</b> Sokołowska, Karolina; Luan, Zhongyue; Hulkko, Eero; Rameshan, Christoph; Barrabés, Noelia; Apkarian, Vartkess A.; Lahtinen, Tanja (2020). Chemically Selective Imaging of Individual Bonds through Scanning Electron Energy-Loss Spectroscopy : Disulfide Bridges Linking Gold Nanoclusters. <i>Journal of Physical Chemistry Letters, 11 (3), 796-799.</i> <a href="https://doi.org/10.1021/acs.jpclett.9b03496"target="_blank"> DOI: 10.1021/acs.jpclett.9b03496</a>
dc.subjectnanohiukkaset
dc.subjectnanorakenteet
dc.subjectkulta
dc.subjectkarboksyylihapot
dc.subjectkemialliset sidokset
dc.subjectgold nanoclusters
dc.subjectcovalent linking
dc.subjectAu₁₀₂(p-MBA)₄₄
dc.subjectpara-mercaptobenzoic acid
dc.subjecttransmission electron microscope
dc.subject.othergold nanoclusteren
dc.subject.othercovalent linkingen
dc.subject.otherAu102(p-MBA)44en
dc.subject.otherpara-mercaptobenzoic aciden
dc.subject.othertransmission electron microscopeen
dc.titleStudy of Water-Soluble p-MBA-Protected Gold Nanoclusters and Their Superstructures
dc.identifier.urnURN:ISBN:978-951-39-7966-9
dc.subject.ysogolden
dc.subject.ysoclustersen
dc.subject.ysonanomaterialsen
dc.subject.ysosuperstructuresen
dc.subject.ysoelectron microscopesen
dc.date.digitised


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record