Show simple item record

dc.contributor.authorEskelinen, Matti
dc.date.accessioned2019-11-27T09:38:48Z
dc.date.available2019-11-27T09:38:48Z
dc.date.issued2019
dc.identifier.isbn978-951-39-7967-6
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66542
dc.description.abstractRecent research into new technologies for hyperspectral imaging has produced small imagers capable of very fast capture of spectral and spatial information. A design based on an electronically tunable Fabry–Perot interferometer combined with existing camera technology has been developed by VTT and is being utilized in novel applications, such as drone based and handheld hyperspectral imaging. The design allows very fast capture of hyperspectral image cubes with great spatial resolution using either a monochromatic or a colour filter array image sensor. The latter allows imaging speed and wavelength range to be further extended by computing multiple narrowband images from a single exposure. This research describes the process of computing spectroscopic data using these types of imagers and introduces software tools developed by the author for this purpose. The included articles present solutions developed during the research for building analysis software for hyperspectral imaging using high level languages. They also document computational challenges that need to be considered when utilizing colour filter arrays for hyperspectral imaging and demonstrate the feasibility of this type of imager for use in drone based imaging and laboratory conditions. The software libraries produced during the research are made publicly available under free licenses to facilitate development of new hyperspectral imaging applications using this technology. Keywords: Hyperspectral imaging, colour filter array, Fabry–Perot interferometer, software development, data analysis, machine learningen
dc.description.abstractViime aikoina uusiin hyperspektrikuvantamisen teknologioihin kohdistunut tutkimus on tuottanut nopeita ja pieniä spektrikameroita. Suomessa VTT on kehittänyt sähköisesti ohjattavia Fabry–Perot -interferometrejä ja olemassaolevia kamerateknologioita yhdistäviä spektrikameroita, joita on sovellettu uusissa lennokkipohjaisissa ja käsivaraisissa spektrikuvantamisalustoissa. Tekniikalla voidaan kuvata spektrikuutioita nopeasti käyttämällä joko monokromaattisia tai värisuodattimilla varustettuja kamerakennoja. Jälkimmäisten avulla useita aallonpituuskaistoja voidaan kuvata yhdellä valotuksella, mikä lisää kuvantamisnopeutta ja kasvattaa kuvattavissa olevaa aallonpituusaluetta. Tämä teos käy läpi tekijän tähän tarkoitukseen kehittämät menetelmät ja ohjelmistotyökalut. Liitetyissä artikkeleissa esitellään tutkimuksen aikana kehitettyjä ratkaisuja spektridataa analysoivien ohjelmistojen rakentamiseen käyttäen korkean tason ohjelmointikieliä. Tämän lisäksi artikkeleissa käydään läpi laskennallisia haasteita, joita värisuodattimilla varustettujen kennojen käyttö tässä yhteydessä aiheuttaa, ja osoitetaan niillä toteutettujen kameroiden soveltuvuus lennokki- ja laboratoriosovelluksissa. Tutkimuksessa tuotettujen ohjelmistojen avoimella julkaisulla pyritään edesauttamaan teknologian käyttöä tulevissa hyperspektrikuvantamisen sovelluksissa. Avainsanat: Hyperspektrikuvantaminen, värisuodatinmatriisi, Fabry–Perot interferometri, ohjelmistokehitys, data-analyysi, koneoppiminenfi
dc.relation.ispartofseriesJYU dissertations
dc.relation.haspart<b>Artikkeli I:</b> Honkavaara, E., Eskelinen, M., Pölönen, I., Saari, H., Ojanen, H., Mannila, R., . . . Pulkkanen, M. (2016). Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). <i>IEEE Transactions on Geoscience and Remote Sensing, 54 (9).</i> <a href="https://doi.org/10.1109/TGRS.2016.2565471"target="_blank"> DOI: 10.1109/TGRS.2016.2565471</a>
dc.relation.haspart<b>Artikkeli II:</b> Eskelinen, M. (2017). Software Framework for Hyperspectral Data Exploration and Processing in MATLAB. In <i>E. Honkavaara, B. Hu, K. Karantzalos, X. Liang, R. Müller, E. Nocerino, . . . , & P. Rönnholm (Eds.), ISPRS SPEC3D 2017 : Frontiers in Spectral imaging and 3D Technologies for Geospatial Solutions (pp. 47-50). International Society for Photogrammetry and Remote Sensing.</i> <a href="https://doi.org/10.5194/isprs-archives-XLII-3-W3-47-2017"target="_blank"> DOI: 10.5194/isprs-archives-XLII-3-W3-47-2017</a>
dc.relation.haspart<b>Artikkeli III:</b> Annala, L., Eskelinen, M., Hämäläinen, J., Riihinen, A., & Pölönen, I. (2018). Practical Approach for Hyperspectral Image Processing in Python. In <i>J. Jiang, A. Shaker, H. Zhang, X. Liang, B. Osmanoglu, U. Soergel, . . . K. Komp (Eds.), ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing” (pp. 45-52). International Society for Photogrammetry and Remote Sensing.</i> <a href="https://doi.org/10.5194/isprs-archives-XLII-3-45-2018"target="_blank"> DOI: 10.5194/isprs-archives-XLII-3-45-2018</a>
dc.relation.haspart<b>Artikkeli IV:</b> Trops, R., Hakola, A.-M., Jääskeläinen, S., Näsilä, A., Annala, L., Eskelinen, M., . . . Rissanen, A. (2019). Miniature MOEMS hyperspectral imager with versatile analysis tools. In <i>W. Piyawattanametha, Y.-H. Park, & H. Zappe (Eds.), Proceedings of SPIE Volume 10931 : MOEMS and Miniaturized Systems XVIII; 109310W (pp. 109310W). SPIE, The International Society for Optical Engineering.</i> <a href="https://doi.org/10.1117/12.2506366"target="_blank"> DOI: 10.1117/12.2506366</a>
dc.relation.haspart<b>Artikkeli V:</b> Eskelinen, M., & Hämäläinen, J. (2019). Dangers of Demosaicing : Confusion From Correlation. In <i>WHISPERS 2018 : 9th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing. IEEE.</i> <a href="https://doi.org/10.1109/WHISPERS.2018.8747204"target="_blank"> DOI: 10.1109/WHISPERS.2018.8747204</a>
dc.subjectspektrikuvaus
dc.subjectkuvankäsittely
dc.subjectohjelmistokirjastot
dc.subjectohjelmistokehitys
dc.subjectanalyysimenetelmät
dc.subjectkoneoppiminen
dc.subjecthyperspectral imaging
dc.subjectcolour filter array
dc.subjectFabry-Perot interferometer
dc.subjectsoftware development
dc.subjectdata analysis
dc.subjectmachine learning
dc.titleComputational methods for hyperspectral imaging using Fabry–Perot interferometers and colour cameras
dc.identifier.urnURN:ISBN:978-951-39-7967-6
dc.date.digitised


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record