University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Kirjain-äännevastaavuuden oppimisen mallinnus bayesilaisella menetelmällä

Thumbnail
View/Open
945.5Kb

Downloads:  
Show download detailsHide download details  
Authors
Venäläinen, Irene
Date
2019
Discipline
TietotekniikkaMathematical Information Technology
Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

 
Tämä tutkielma kuvaa erään tavan mallintaa kirjain-äännevastaavuuksien oppimista. Malli on luotu Ekapeliä varten käyttäen apuna pelistä kerättyä dataa. Mallin toteutuksessa käytettiin bayesilaisen tilastotieteen menetelmiä. Tavoitteena oli käyttää mallia uuden adaptaation luomiseen. Malli ei kuitenkaan sopinut suoraan pelin adaptaatiossa käytettäväksi laskennallisista ongelmista johtuen. Mallin avulla haluttiin myös visualisoida pelaajan osaamista ja kuvaajien avulla voidaankin helposti näyttää kokonaiskuva kirjainten osaamisesta.
 
This thesis describes a bayesian model for learning letter-sound correspondences. The model was created for Ekapeli using data from the game. The model was created using bayesian methods. Purpose of the model was to create a new adaptation for Ekapeli. Because of high computational time, the model doesn't suite for an adaptation without simplifications. Another goal for the model was to help visualize the player's learning. The model suited well for visualizing the player's knowledge of the letter-sound correspondences.
 
Keywords
bayesilainen tilastotiede Ekapeli Markovin ketju Monte Carlo oppimispelit Markovin ketjut pelit
URI

http://urn.fi/URN:NBN:fi:jyu-201911204944

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [23424]

Related items

Showing items with similar title or keywords.

  • Conditional particle filters with diffuse initial distributions 

    Karppinen, Santeri; Vihola, Matti (Springer, 2021)
    Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which ...
  • A New Method to Reconstruct Quantitative Food Webs and Nutrient Flows from Isotope Tracer Addition Experiments 

    López-Sepulcre, Andres; Bruneaux, Matthieu; Collins, Sarah M.; El-Sabaawi, Rana; Flecker, Alexander S.; Thomas, Steven A. (University of Chicago Press, 2020)
    Understanding how nutrients flow through food webs is central in ecosystem ecology. Tracer addition experiments are powerful tools to reconstruct nutrient flows by adding an isotopically enriched element into an ecosystem ...
  • Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo 

    Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)
    We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ...
  • Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions 

    Chada, Neil K.; Franks, Jordan; Jasra, Ajay; Law, Kody J.; Vihola, Matti (Society for Industrial & Applied Mathematics (SIAM), 2021)
    We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretization bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation ...
  • On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction 

    Vihola, Matti; Franks, Jordan (Oxford University Press, 2020)
    Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre