Näytä suppeat kuvailutiedot

dc.contributor.authorKalmykov, Sergei
dc.contributor.authorKovalev, Leonid V.
dc.contributor.authorRajala, Tapio
dc.date.accessioned2019-11-12T08:22:12Z
dc.date.available2019-11-12T08:22:12Z
dc.date.issued2019
dc.identifier.citationKalmykov, S., Kovalev, L. V., & Rajala, T. (2019). Removable sets for intrinsic metric and for holomorphic functions. <i>Journal d'Analyse Mathématique</i>, <i>139</i>(2), 751-772. <a href="https://doi.org/10.1007/s11854-024-0076-2" target="_blank">https://doi.org/10.1007/s11854-024-0076-2</a>
dc.identifier.otherCONVID_33507518
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66319
dc.description.abstractWe study the subsets of metric spaces that are negligible for the infimal length of connecting curves; such sets are called metrically removable. In particular, we show that every closed totally disconnected set with finite Hausdorff measure of codimension 1 is metrically removable, which answers a question raised by Hakobyan and Herron. The metrically removable sets are shown to be related to other classes of “thin” sets that appeared in the literature. They are also related to the removability problems for classes of holomorphic functions with restrictions on the derivative.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer; Hebrew University Magnes Press
dc.relation.ispartofseriesJournal d'Analyse Mathématique
dc.rightsIn Copyright
dc.subject.otherintrinsic metrics
dc.subject.otherholomorphic functions
dc.titleRemovable sets for intrinsic metric and for holomorphic functions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201911124829
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange751-772
dc.relation.issn0021-7670
dc.relation.numberinseries2
dc.relation.volume139
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Springer
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber274372
dc.subject.ysometriset avaruudet
dc.subject.ysomatematiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
jyx.subject.urihttp://www.yso.fi/onto/yso/p3160
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s11854-024-0076-2
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationFirst author supported by NSFC grant 11650110426. Second author supported by the National Science Foundation grant DMS-1362453. Third author supported by the Academy of Finland project no. 274372.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright