Näytä suppeat kuvailutiedot

dc.contributor.authorVischi, Francesco
dc.contributor.authorCarrega, Matteo
dc.contributor.authorBraggio, Alessandro
dc.contributor.authorVirtanen, Pauli
dc.contributor.authorGiazotto, Francesco
dc.date.accessioned2019-11-08T14:22:49Z
dc.date.available2019-11-08T14:22:49Z
dc.date.issued2019
dc.identifier.citationVischi, F., Carrega, M., Braggio, A., Virtanen, P., & Giazotto, F. (2019). Thermodynamics of a Phase-Driven Proximity Josephson Junction. <i>Entropy</i>, <i>21</i>(10), Article 1005. <a href="https://doi.org/10.3390/e21101005" target="_blank">https://doi.org/10.3390/e21101005</a>
dc.identifier.otherCONVID_33491961
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66288
dc.description.abstractWe study the thermodynamic properties of a superconductor/normal metal/superconductor Josephson junction in the short limit. Owing to the proximity effect, such a junction constitutes a thermodynamic system where phase difference, supercurrent, temperature and entropy are thermodynamical variables connected by equations of state. These allow conceiving quasi-static processes that we characterize in terms of heat and work exchanged. Finally, we combine such processes to construct a Josephson-based Otto and Stirling cycles. We study the related performance in both engine and refrigerator operating mode.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI
dc.relation.ispartofseriesEntropy
dc.rightsCC BY 4.0
dc.subject.otherproximity effect
dc.subject.othersuperconductivity
dc.subject.otherJosephson junction
dc.subject.otherSNS junction
dc.subject.otherJosephson thermodynamics
dc.subject.otherMaxwell relation
dc.subject.otherquasi-particles entropy
dc.subject.otherquantum thermodynamics
dc.subject.otherquantum machines
dc.subject.otherquantum coolers
dc.titleThermodynamics of a Phase-Driven Proximity Josephson Junction
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201911084803
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1099-4300
dc.relation.numberinseries10
dc.relation.volume21
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 by the authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysosuprajohtavuus
dc.subject.ysosuprajohteet
dc.subject.ysotermodynamiikka
dc.subject.ysokvanttifysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9398
jyx.subject.urihttp://www.yso.fi/onto/yso/p9946
jyx.subject.urihttp://www.yso.fi/onto/yso/p14558
jyx.subject.urihttp://www.yso.fi/onto/yso/p5564
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/e21101005
jyx.fundinginformationThe authors acknowledge the European Research Council under the European Unions Seventh Frame-work Programme (FP7/2007-2013)/ERC Grant No. 615187 - COMANCHE, the European Unions Horizon 2020 research and innovation programme under the grant no. 777222 ATTRACT (Project T-CONVERSE), the HorizonresearchandinnovationprogrammeundergrantagreementNo. 800923(SUPERTED),theTuscanyRegion undertheFARFAS2014projectSCIADRO.M.C.acknowledgessupportfromtheQuant-Eranetproject“SuperTop”. A.B. acknowledges the CNR-CONICET cooperation program Energy conversion in quantum nanoscale hybrid devices, the SNS-WIS joint lab QUANTRA, funded by the Italian Ministry of Foreign Affairs and International Cooperation and the Royal Society through the International Exchanges between the UK and Italy (Grant No. IES R3 170054 and IEC R2 192166).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0