Näytä suppeat kuvailutiedot

dc.contributor.authorKarvonen, Anssi
dc.contributor.authorFenton, Andy
dc.contributor.authorSundberg, Lotta-Riina
dc.date.accessioned2019-11-05T12:34:56Z
dc.date.available2019-11-05T12:34:56Z
dc.date.issued2019
dc.identifier.citationKarvonen, A., Fenton, A., & Sundberg, L.-R. (2019). Sequential infection can decrease virulence in a fish‐bacterium‐fluke interaction : implications for aquaculture disease management. <i>Evolutionary Applications</i>, <i>12</i>(10), 1900-1911. <a href="https://doi.org/10.1111/eva.12850" target="_blank">https://doi.org/10.1111/eva.12850</a>
dc.identifier.otherCONVID_32210441
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/66161
dc.description.abstractHosts are typically infected with multiple strains or genotypes of one or several parasite species. These infections can take place simultaneously, but also at different times, i.e. sequentially, when one of the parasites establishes first. Sequential parasite dynamics are common in nature, but also in intensive farming units such as aquaculture. However, knowledge of effects of previous exposures on virulence of current infections in intensive farming is very limited. This is critical as consecutive epidemics and infection history of a host could underlie failures in management practises and medical intervention of diseases. Here, we explored effects of timing of multiple infection on virulence in two common aquaculture parasites, the bacterium Flavobacterium columnare and the fluke Diplostomum pseudospathaceum. We exposed fish hosts first to flukes and then to bacteria in two separate experiments, altering timing between the infections from few hours to several weeks. We found that both short‐term and long‐term difference in timing of the two infections resulted in significant, genotype‐specific decrease in bacterial virulence. Second, we developed a mathematical model, parameterized from our experimental results, to predict the implications of sequential infections for epidemiological progression of the disease, and levels of fish population suppression, in an aquaculture setting. Predictions of the model showed that sequential exposure of hosts can decrease the population‐level impact of the bacterial epidemic, primarily through the increased recovery rate of sequentially infected hosts, thereby substantially protecting the population from the detrimental impact of infection. However, these effects depended on bacterial strain–fluke genotype combinations, suggesting the genetic composition of the parasite populations can greatly influence the degree of host suppression. Overall, these results suggest that host infection history can have significant consequences for the impact of infection at host population level, potentially shaping parasite epidemiology, disease dynamics and evolution of virulence in farming environments.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherWiley-Blackwell Publishing, Inc.
dc.relation.ispartofseriesEvolutionary Applications
dc.rightsCC BY 4.0
dc.subject.otherdynamic infection
dc.subject.otherepidemiology
dc.subject.othermultiple infection
dc.subject.othersequential infection
dc.subject.otherspatiotemporal variation
dc.subject.otheraquaculture
dc.titleSequential infection can decrease virulence in a fish‐bacterium‐fluke interaction : implications for aquaculture disease management
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201911054719
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineAkvaattiset tieteetfi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineCell and Molecular Biologyen
dc.contributor.oppiaineAquatic Sciencesen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1900-1911
dc.relation.issn1752-4571
dc.relation.numberinseries10
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 The Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber314939
dc.relation.grantnumber266879
dc.relation.grantnumber310632
dc.subject.ysovesiviljely (kalatalous)
dc.subject.ysoinfektiot
dc.subject.ysoepidemiologia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5099
jyx.subject.urihttp://www.yso.fi/onto/yso/p7316
jyx.subject.urihttp://www.yso.fi/onto/yso/p11307
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.dataset10.5061/dryad.8f57ck3
dc.relation.doi10.1111/eva.12850
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThis work was supported by the Finnish Centre of Excellence Program of the Academy of Finland; the CoE in Biological Interactions 2012-2017 (#252411), and by the Academy of Finland grants #263864, #266879, #292763,#310632, and #314939.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0