dc.contributor.author | Liu, Jia | |
dc.contributor.author | Zhang, Chi | |
dc.contributor.author | Zhu, Yongjie | |
dc.contributor.author | Ristaniemi, Tapani | |
dc.contributor.author | Parviainen, Tiina | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2019-10-17T08:30:47Z | |
dc.date.available | 2019-10-17T08:30:47Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Liu, J., Zhang, C., Zhu, Y., Ristaniemi, T., Parviainen, T., & Cong, F. (2020). Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition. <i>Computer Methods and Programs in Biomedicine</i>, <i>184</i>, Article 105120. <a href="https://doi.org/10.1016/j.cmpb.2019.105120" target="_blank">https://doi.org/10.1016/j.cmpb.2019.105120</a> | |
dc.identifier.other | CONVID_33169000 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/65924 | |
dc.description.abstract | Background and objective. It is challenging to conduct real-time identification of myocardial infarction (MI) due to artifact corruption and high dimensionality of multi-lead electrocardiogram (ECG). In the present study, we proposed an automated single-beat MI detection and localization system using dual-Q tunable Q-factor wavelet transformation (Dual-Q TQWT) denoising algorithm.
Methods. After denoising and segmentation of ECG, a fourth-order wavelet tensor (leads × subbands × samples × beats) was constructed based on thediscretewavelet packet transform (DWPT), to represent the features considering the information of inter-beat, intra-beat, inter-frequency, and inter-lead. To reduce the tensor dimension and preserve the intrinsic information, the multilinear principal component analysis (MPCA) was employed. Afterward, 84 discriminate features were fed into a classifier of bootstrap-aggregated decision trees (Treebagger). A total of 78 healthy and 328 MI (6types) records including 57557 beats were chosen from PTB diagnostic ECG database for evaluation.
Results.The validation results demonstratedthat our proposed MI detection and localization system embedded with Dual-Q TQWT and wavelet packet tensor decomposition outperformedcommonly used discrete wavelet transform (DWT), empirical mode decomposition (EMD) denoising methods and vector-based PCA method. With the Treebagger classifier, we obtained an accuracy of 99.98% in beat level and an accuracy of 97.46% in record level training/testing for MI detection. We also achieved an accuracy of 99.87% in beat level and an accuracy of 90.39% in record level for MI localization.
Conclusion. Altogether, the automated system brings potential improvement in automated detectionand localization of MI in clinical practice. | en |
dc.format.mimetype | application/pdf | |
dc.language | eng | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartofseries | Computer Methods and Programs in Biomedicine | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | electrocardiogram (ECG) | |
dc.subject.other | myocardial infarction (MI) | |
dc.subject.other | dual-Q tunable Q-factor wavelet transformation (Dual-Q TQWT) | |
dc.subject.other | discrete wavelet packet transform (DWPT) | |
dc.subject.other | multilinear principal component analysis (MPCA) | |
dc.title | Automated detection and localization system of myocardial infarction in single-beat ECG using Dual-Q TQWT and wavelet packet tensor decomposition | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-201910174496 | |
dc.contributor.laitos | Psykologian laitos | fi |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Department of Psychology | en |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Monitieteinen aivotutkimuskeskus | fi |
dc.contributor.oppiaine | Hyvinvoinnin tutkimuksen yhteisö | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Centre for Interdisciplinary Brain Research | en |
dc.contributor.oppiaine | School of Wellbeing | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0169-2607 | |
dc.relation.volume | 184 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2019 Elsevier B.V. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | signaalianalyysi | |
dc.subject.yso | sydäninfarkti | |
dc.subject.yso | EKG | |
dc.subject.yso | signaalinkäsittely | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26805 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8730 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20204 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.cmpb.2019.105120 | |
jyx.fundinginformation | This work was supported by Fundamental Research Funds for the Central Universities in Dalian University of Technology in China (DUT2019, DUT16RC(3)021), the scholarships from China Scholarship Council (No.201600090044, No.201600090042), and the National Science Foundation of China (No.91748105, No.81471742, No.61703069). | |
dc.type.okm | A1 | |