Show simple item record

dc.contributor.authorLawrence, J. P.
dc.contributor.authorRojas, Bibiana
dc.contributor.authorFouquet, Antoine
dc.contributor.authorMappes, Johanna
dc.contributor.authorBlanchette, Annelise
dc.contributor.authorSaporito, Ralph A.
dc.contributor.authorBosque, Renan Janke
dc.contributor.authorCourtois, Elodie A.
dc.contributor.authorNoonan, Brice P.
dc.date.accessioned2019-09-20T06:57:21Z
dc.date.available2019-09-20T06:57:21Z
dc.date.issued2019
dc.identifier.citationLawrence, J. P., Rojas, B., Fouquet, A., Mappes, J., Blanchette, A., Saporito, R. A., Bosque, R. J., Courtois, E. A., & Noonan, B. P. (2019). Weak warning signals can persist in the absence of gene flow. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>116</i>(38), 19037-19045. <a href="https://doi.org/10.1073/pnas.1901872116" target="_blank">https://doi.org/10.1073/pnas.1901872116</a>
dc.identifier.otherCONVID_32520571
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65579
dc.description.abstractAposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherNational Academy of Sciences
dc.relation.ispartofseriesProceedings of the National Academy of Sciences of the United States of America
dc.rightsCC BY-NC-ND 4.0
dc.subject.otheraposematism
dc.subject.otherfrequency-dependent selection
dc.subject.otherpolymorphism
dc.subject.otherunpalatability
dc.subject.othersecondary defenses
dc.titleWeak warning signals can persist in the absence of gene flow
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201909204226
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineEkologia ja evoluutiobiologiafi
dc.contributor.oppiaineBiologisten vuorovaikutusten huippututkimusyksikköfi
dc.contributor.oppiaineEcology and Evolutionary Biologyen
dc.contributor.oppiaineCentre of Excellence in Biological Interactions Researchen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange19037-19045
dc.relation.issn0027-8424
dc.relation.numberinseries38
dc.relation.volume116
dc.type.versionpublishedVersion
dc.rights.copyright© The Authors, 2019
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber284666
dc.subject.ysovaroitusväri
dc.subject.ysoluonnonvalinta
dc.subject.ysopuolustusmekanismit (biologia)
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27907
jyx.subject.urihttp://www.yso.fi/onto/yso/p4473
jyx.subject.urihttp://www.yso.fi/onto/yso/p6078
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.datasethttps://doi.org/10.17011/jyx/dataset/65263
dc.relation.doi10.1073/pnas.1901872116
dc.relation.funderSuomen Akatemiafi
dc.relation.funderResearch Council of Finlanden
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundinginformationThis work was supported in part by Investissement d’Avenir Grant CEBA ANR-10-LABX-25-01 of the Agence Nationale de la Recherche; the American Society of Ichthyologists and Herpetologists’ Gaige Award (to J.P.L.); and a Society for the Study of Amphibians and Reptiles’ grant in Herpetology (to J.P.L.). B.R. and J.M. were funded by the Finnish Centre of Excellence in Biological Interactions (Project 28466, to J.M.). B.R. also acknowledges funding from the Academy of Finland (Academy Research Fellowship, project No. 21000042021).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0