Näytä suppeat kuvailutiedot

dc.contributor.authorDon, Sebastiano
dc.contributor.authorVittone, Davide
dc.date.accessioned2019-09-05T11:41:36Z
dc.date.available2021-11-01T22:35:09Z
dc.date.issued2019
dc.identifier.citationDon, S., & Vittone, D. (2019). Fine properties of functions with bounded variation in Carnot-Carathéodory spaces. <i>Journal of Mathematical Analysis and Applications</i>, <i>479</i>(1), 482-530. <a href="https://doi.org/10.1016/j.jmaa.2019.06.035" target="_blank">https://doi.org/10.1016/j.jmaa.2019.06.035</a>
dc.identifier.otherCONVID_31225651
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65426
dc.description.abstractWe study properties of functions with bounded variation in Carnot-Carathéodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R, we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAcademic Press
dc.relation.ispartofseriesJournal of Mathematical Analysis and Applications
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherfunctions with bounded variation
dc.subject.otherCarnot-Carathéodory spaces
dc.titleFine properties of functions with bounded variation in Carnot-Carathéodory spaces
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201909023999
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-09-02T12:15:15Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange482-530
dc.relation.issn0022-247X
dc.relation.numberinseries1
dc.relation.volume479
dc.type.versionacceptedVersion
dc.rights.copyright© 2019 Elsevier Inc.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber288501
dc.relation.grantnumber713998
dc.relation.grantnumber713998
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/713998/EU//GeoMeG
dc.subject.ysodifferentiaaligeometria
dc.subject.ysomittateoria
dc.subject.ysovariaatiolaskenta
dc.subject.ysofunktiot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p11197
jyx.subject.urihttp://www.yso.fi/onto/yso/p7097
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.jmaa.2019.06.035
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
dc.relation.funderAcademy of Finlanden
dc.relation.funderEuropean Commissionen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramERC Starting Grantfi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramERC Starting Granten
jyx.fundinginformationThe authors are supported by the University of Padova Project Networking and STARS Project “Sub-Riemannian Geometry and Geometric Measure Theory Issues: Old and New” (SUGGESTION), and by GNAMPA of INdAM (Italy) project “Campi vettoriali, superfici e perimetri in geometrie singolari”. The second named author wishes to acknowledge the support and hospitality of FBK-CIRM (Trento), where part of this paper was written. The first named author has been partially supported by the Academy of Finland (grant 288501 “Geometry of subRiemannian groups”) and by the European Research Council (ERC Starting Grant 713998 GeoMeG “Geometry of Metric Groups”).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0