Effective axial-vector strength within proton-neutron deformed quasiparticle random-phase approximation
Abstract
We use the available experimental Gamow-Teller β− and β+/EC (electron-capture) decay rates between 0+ and 1+ ground states in neighboring even-even and odd-odd nuclei, combined with 2νββ half-lives, to analyze the influence of the nuclear environment on the weak axial-vector strength gA. For this purpose, the proton-neutron deformed quasiparticle random-phase approximation (pn-dQRPA), with schematic dipole residual interaction is employed. The Hamiltonian contains particle-hole (ph) and particle-particle (pp) channels with mass-dependent strengths. In deriving the equations of motion we use a self-consistent procedure in terms of a single-particle basis with projected angular momentum provided by the diagonalization of a spherical mean field plus the quadrupole-quadrupole interaction. Our analysis evidenced a quenched average effective value ⟨gA⟩ ≈ 0.7 with a root-mean-square deviation of σ ≈ 0.3 for transitions from even-even emitters and σ ≈ 0.6 for transitions from odd-odd emitters.
Main Authors
Format
Articles
Research article
Published
2019
Series
Subjects
Publication in research information system
Publisher
American Physical Society
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201909023991Use this for linking
Review status
Peer reviewed
ISSN
2469-9985
DOI
https://doi.org/10.1103/PhysRevC.100.024331
Language
English
Published in
Physical Review C
Citation
- Delion, D. S., Dumitrescu, A., & Suhonen, J. (2019). Effective axial-vector strength within proton-neutron deformed quasiparticle random-phase approximation. Physical Review C, 100(2), Article 024331. https://doi.org/10.1103/PhysRevC.100.024331
Funder(s)
Research Council of Finland
Funding program(s)
Akatemiahanke, SA
Academy Project, AoF
![Research Council of Finland Research Council of Finland](/jyx/themes/jyx/images/funders/sa_logo.jpg?_=1739278984)
Additional information about funding
This work has been partially supported by grants of the Romanian Ministry of Research and Innovation, CNCSUEFISCDI, PN-III-P4-ID-PCE-2016-0092, PN-III-P4-DPCE-2016-0792, within PNCDI III, PN-19060105/2019, and by the Academy of Finland (Suomen Akatemia) under Academy Project No. 318043.
Copyright© 2019 American Physical Society