Resolvent estimates for the magnetic Schrödinger operator in dimensions ≥2
Meroño, C. J., Potenciano-Machado, L., & Salo, M. (2020). Resolvent estimates for the magnetic Schrödinger operator in dimensions ≥2. Revista Matemática Complutense, 33(2), 619-641. https://doi.org/10.1007/s13163-019-00316-z
Published in
Revista Matemática ComplutenseDate
2020Copyright
© Universidad Complutense de Madrid 2019
It is well known that the resolvent of the free Schrödinger operator on weighted L2 spaces has norm decaying like λ−12 at energy λ . There are several works proving analogous high frequency estimates for magnetic Schrödinger operators, with large long or short range potentials, in dimensions n≥3 . We prove that the same estimates remain valid in all dimensions n≥2 .
Publisher
SpringerISSN Search the Publication Forum
1139-1138Keywords
Please see also
https://rdcu.be/bMF6bPublication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/32174433
Metadata
Show full item recordCollections
Related funder(s)
European Commission; Academy of FinlandFunding program(s)
Centre of Excellence, AoF; Academy Project, AoF


The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
C.M. was supported by Spanish government predoctoral Grant BES-2015-074055 and projects MTM2014-57769-C3-1-P and MTM2017-85934-C3-3-P. L.P. and M.S. were supported by the Academy of Finland (Centre of Excellence in Inverse Modeling and Imaging, Grant Nos. 284715 and 309963) and by the European Research Council under Horizon 2020 (ERC CoG 770924)License
Related items
Showing items with similar title or keywords.
-
Determining a Random Schrödinger Operator : Both Potential and Source are Random
Li, Jingzhi; Liu, Hongyu; Ma, Shiqi (Springer, 2021)We study an inverse scattering problem associated with a Schrödinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a ... -
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ... -
Sähköisen impedanssitomografian inversio-ongelma
Nurminen, Janne (2020)Tässä tutkielmassa esitellään sähköisen impedanssitomografian matemaattista mallia sekä johtavuusyhtälöön liittyvää inversio-ongelmaa. Tutkielman päätuloksena osoitetaan, että kappaleen reunalla tehtävien mittauksien avulla ... -
Normalisoidun p-parabolisen yhtälön radiaaliset ratkaisut
Kurkinen, Tapio (2020)Tässä tutkielmassa tarkastellaan stokastisesta peliteoriasta esille tullutta normalisoitua p-parabolista yhtälöä ja tämän radiaalisten ratkaisujen yhteyttä klassiseen lämpöyhtälöön. Radiaalisia ratkaisuja tarkastellessa ... -
An Inverse Problem for the Relativistic Boltzmann Equation
Balehowsky, Tracey; Kujanpää, Antti; Lassas, Matti; Liimatainen, Tony (Springer, 2022)We consider an inverse problem for the Boltzmann equation on a globally hyperbolic Lorentzian spacetime (M, g) with an unknown metric g. We consider measurements done in a neighbourhood V⊂M of a timelike path μ that connects ...