Näytä suppeat kuvailutiedot

dc.contributor.authorKwiatkowski, Adam
dc.contributor.authorKolehmainen, Erkki
dc.contributor.authorOśmiałowski, Borys
dc.date.accessioned2019-07-25T08:16:22Z
dc.date.available2019-07-25T08:16:22Z
dc.date.issued2019
dc.identifier.citationKwiatkowski, A., Kolehmainen, E., & Ośmiałowski, B. (2019). Conformational and Tautomeric Control by Supramolecular Approach in Ureido-N-iso-propyl,N’-4-(3-pyridin-2-one)pyrimidine. <i>Molecules</i>, <i>24</i>(13), Article 2491. <a href="https://doi.org/10.3390/molecules24132491" target="_blank">https://doi.org/10.3390/molecules24132491</a>
dc.identifier.otherCONVID_32092652
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/65116
dc.description.abstractUreido-N-iso-propyl,N’-4-(3-pyridin-2-one)pyrimidine (1) and its 2-methoxy pyridine derivative (1Me) has been designed and prepared. The conformational equilibrium in urea moiety and tautomerism in the pyrimidine part have been investigated by variable temperature and 1H NMR titrations as well as DFT quantum chemical calculations. The studied compounds readily associate by triple hydrogen bonding with 2-aminonaphthyridine (A) and/or 2,6-bis(acetylamino)pyridine (B). In 1, the proton is forced to 1,3-tautomeric shift upon stimuli and keeps it position, even when one of the partners in the complex was replaced by another molecule. The observed tautomerism controlled by conformational state (kinetic trapping effect) opens new possibilities in molecular sensing that are based on the fact that reverse reaction is not preferred.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesMolecules
dc.rightsCC BY 4.0
dc.subject.othertautomeria
dc.subject.othervetysidokset
dc.subject.othermolekyylit
dc.subject.othertautomerism
dc.subject.otherintermolecular interactions
dc.subject.otherhydrogen bonding
dc.subject.othermolecular switch
dc.titleConformational and Tautomeric Control by Supramolecular Approach in Ureido-N-iso-propyl,N’-4-(3-pyridin-2-one)pyrimidine
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-20190725367
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineOrganic Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1420-3049
dc.relation.numberinseries13
dc.relation.volume24
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 by the authors.
dc.rights.accesslevelopenAccessfi
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/molecules24132491
jyx.fundinginformationThis work was supported by this work was supported by the National Science Centre, Poland under Grant 2013/09/B/ST4/02308. PL-Grid Infrastructure supported this research.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0