Sub-Riemannian Geodesics
Julkaistu sarjassa
JYU dissertationsTekijät
Päivämäärä
2019Tekijänoikeudet
© The Author & University of Jyväskylä
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-7810-5ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Hakavuori, E., & Le Donne, E. (2016). Non-minimality of corners in subriemannian geometry. Inventiones mathematicae, 206 (3), 693-704. DOI: 10.1007/s00222-016-0661-9
- Artikkeli II: Hakavuori, E. & Le Donne, E. (2018). Blowups and blowdowns of geodesics in Carnot groups. arXiv:1806.09375
- Artikkeli III: Hakavuori, E. (2019). Infinite geodesics and isometric embeddings in Carnot groups of step 2. arXiv:1905.03214
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [852]
- Väitöskirjat [3571]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Curvature exponent and geodesic dimension on Sard-regular Carnot groups
Nicolussi Golo, Sebastiano; Zhang, Ye (De Gruyter, 2024)In this study, we characterize the geodesic dimension NGEO and give a new lower bound to the curvature exponent NCE on Sard-regular Carnot groups. As an application, we give an example of step-two Carnot group on which NCE ... -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ... -
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
Le Donne, Enrico; Moisala, Terhi (Springer, 2021)This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our ... -
Topics in the geometry of non-Riemannian lie groups
Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.