Utilization of Efficient Features, Vectors and Machine Learning for Ranking Techniques
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2019Tekijänoikeudet
© The Author & University of Jyväskylä
Document ranking systems and recommender systems are two of the most
used applications on the internet. Document ranking systems search for documents
in response to a query given by the user. On the other hand, recommender
systems suggest items to the users on the basis of their previously expressed preferences.
Both document ranking systems and recommender systems make use
of ranking techniques, since they typically present their results in the form of a
ranked list. The order of the results is important because the users expect the
most useful results at the top of these ranked lists.
Improvements in algorithms used by document ranking systems and recommender
systems, including the utilization of advanced machine learning techniques,
lead to the generation of improved rankings. Moreover, advanced document
ranking systems often use features collected from the documents to generate
rankings. Similarly, vectors generated for the users as well as items are utilized
by the recommender systems. Therefore, generation of features and vectors
of good quality is instrumental for ranking techniques.
This dissertation makes the following contributions to explore the improvements
in ranking techniques using efficient features, vectors and machine learning:
a) Creation of a feature extraction algorithm for learning to rank tasks in document
ranking, b) Creation of pairwise preference vectors of ratings on items by
using neural embeddings that can be utilized in machine learning tasks including
recommender systems, c) Utilization of deep neural networks and transfer
learning for serendipitous recommendations, d) Recommendations using ranking
probabilities and non-negative matrix factorization and e) Application of neural
embeddings to search for cities and tours, taking user’s travel interests into
account.
Keywords: Ranking, Information Retrieval, Recommender Systems, Deep Learning,
Neural Embedding, Serendipitous Recommendations
...
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-7806-8ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Pandey, G., Ren, Z., Wang, S., Veijalainen, J., & Rijke, M. d. (2018). Linear feature extraction for ranking. Information Retrieval, 21 (6), 481-506. DOI: 10.1007/s10791-018-9330-5
- Artikkeli II: Pandey, G., Wang, S., Ren, Z., & Chang, Y. (2019). Vectors of Pairwise Item Preferences. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, & D. Hiemstra (Eds.), ECIR 2019: Advances in Information Retrieval : 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14–-8, 2019, Proceedings, Part I (pp. 323-336). Cham: Springer. DOI: 10.1007/978-3-030-15712-8_21
- Artikkeli III: Pandey, G., Kotkov, D., & Semenov, A. (2018). Recommending Serendipitous Items using Transfer Learning. In CIKM '18 : Proceedings of the 27th ACM International Conference on Information and Knowledge Management (pp. 1771-1774). ACM Press. DOI: 10.1145/3269206.3269268
- Artikkeli IV: Pandey, G., & Wang, S. (2018). Listwise Recommendation Approach with Non-negative Matrix Factorization. In I. Czarnowski, R. J. Howlett, L. C. Jain, & L. Vlacic (Eds.), KES-IDT 2018 : Proceedings of the 10th International KES Conference on Intelligent Decision Technologies (pp. 22-32). Cham: Springer. DOI: 10.1007/978-3-319-92028-3_3
- Artikkeli V: Maksoud, M. A., Pandey, G., & Wang, S. (2017). CitySearcher: A City Search Engine For Interests. In SIGIR '17 : Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1141-1144). New York: ACM. DOI: 10.1145/3077136.3080742
- Artikkeli VI: Maksoud, Mohamed Abdul; Pandey, Gaurav; Wang, Shuaiqiang (2018). Finding tours for a set of interests. In WWW '18 Companion: The 2018 Web Conference Companion, April 23–27, 2018, Lyon, France. ACM, New York, NY, USA. DOI: 10.1145/3184558.3186982
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [875]
- Väitöskirjat [3607]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Absolute of Relative? A New Approach to Building Feature Vectors For Emotion Tracking In Music
Imbrasaitė, Vaiva; Robinson, Peter (University of Jyväskylä, Department of Music, 2013)It is believed that violation of or conformity to expectancy when listening to music is one of the main sources of musical emotion. To address this, we test a new way of building feature vectors and representing features ... -
Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?
Linja, Joakim; Hämäläinen, Joonas; Nieminen, Paavo; Kärkkäinen, Tommi (MDPI AG, 2020)Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of ... -
Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices
Taskinen, Sara; Croux, Christophe; Kankainen, Annaliisa; Ollila, Esa; Oja, Hannu (Elsevier, 2006)In this paper, the influence functions and limiting distributions of the canonical correlations and coefficients based on affine equivariant scatter matrices are developed for elliptically symmetric distributions. General ... -
Aberrant brain functional networks in type 2 diabetes mellitus : A graph theoretical and support-vector machine approach
Lin, Lin; Zhang, Jindi; Liu, Yutong; Hao, Xinyu; Shen, Jing; Yu, Yang; Xu, Huashuai; Cong, Fengyu; Li, Huanjie; Wu, Jianlin (Frontiers Media SA, 2022)Objective: Type 2 diabetes mellitus (T2DM) is a high risk of cognitive decline and dementia, but the underlying mechanisms are not yet clearly understood. This study aimed to explore the functional connectivity (FC) and ... -
Gut strength? : exploring the discourse features between presenters of different sexes in essential strength training breathing technique instructional videos
Markkanen, Eetu (2021)Sukupuolten väliset erot ovat usealla eri elämänalueella tarkasteltu ja jopa erilaisia kiistojakin aiheuttava tekijä. Tässä tutkimuksessa keskityttiin tarkastelemaan sukupuolten välisiä mahdollisia eroja ja yhtäläisyyksi ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.