Näytä suppeat kuvailutiedot

dc.contributor.advisorLehtonen, Ari
dc.contributor.authorHaasianlahti, Ivar
dc.date.accessioned2019-06-26T06:33:19Z
dc.date.available2019-06-26T06:33:19Z
dc.date.issued2019
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/64856
dc.description.abstractTämä tutkielma käsittelee reaalisia ja kompleksisia tieintegraaleja tasossa. Kiinnostuksen kohteena ovat erityisesti ne erikoistapaukset, joissa integrointiin liittyvä tie on suljettu, ja integroitava kuvaus on joko lokaalisi integroituva vektorikenttä tai analyyttinen kompleksimuuttujan kompleksiarvoinen funktio. Tutkielman ytimessä ovat kysymykset tällaisten tieintegraalien häviämisestä. Analyyttisyyden ja lokaalin integroituvuuden määritelmät luovat pohjan Cauchyn lauseen neljälle versiolle, ja kukin näistä lauseista antaa ehdot, joiden vallitessa sekä analyyttisen funktion kompleksinen tieintegraali että lokaalisti integroituvan vektorikentän reaalinen tieintegraali (yli suljetun tien) ovat arvoltaan 0. Cauchyn lauseen versiot esitetään nousevassa järjestyksessä, eli jokainen versio on seuraajansa erikoistapaus. Ensimmäinen versio olettaa, että tien kuvajoukko määrittelee vyöhykkeen, eli riittävän "siistin" tason osajoukon. Toinen versio asettaa topologiset ehdot, joiden vallitessa lokaalisti integroituvalle kentälle voidaan konstruoida potentiaalifunktio, joka on läheisessä yhteydessä analyyttisen funktion primitiivin (eli kompleksisen antiderivaatan) käsitteeseen. Edelleen lauseen kolmas versio vaatii, että integroitava kuvaus on lokaalisti integroituva tai analyyttinen yhdesti yhtenäisessä (eli "reiättömässä") joukossa. Lopuksi Cauchyn lauseen neljäs versio paljastaa tieintegraalien (lineaarikombinaatioiden) häviävän, jos tie (teiden lineaarikombinaatio) ei "kierrä" yhtäkään pistettä, jossa integroitava kuvaus ei ole lokaalisti integroituva tai analyyttinen. Lause yleistää edeltäjiensä sanoman yhdistämällä potentiaaliteorian kierrosluvun käsitteeseen.fi
dc.format.extent79
dc.format.mimetypeapplication/pdf
dc.language.isofi
dc.subject.otherpolku
dc.subject.othertieintegraali
dc.subject.otherlokaali integroituvuus
dc.subject.otheranalyyttisyys
dc.subject.otherhomotopia
dc.subject.othernollahomologisuus
dc.subject.otherCauchyn lause
dc.titleCauchyn lause ja potentiaalifunktiot
dc.identifier.urnURN:NBN:fi:jyu-201906263452
dc.type.ontasotPro gradu -tutkielmafi
dc.type.ontasotMaster’s thesisen
dc.contributor.tiedekuntaMatemaattis-luonnontieteellinen tiedekuntafi
dc.contributor.tiedekuntaFaculty of Sciencesen
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.yliopistoJyväskylän yliopistofi
dc.contributor.yliopistoUniversity of Jyväskyläen
dc.contributor.oppiaineMatematiikan opettajankoulutusfi
dc.contributor.oppiaineTeacher education programme in Mathematicsen
dc.rights.copyrightJulkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.fi
dc.rights.copyrightThis publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.en
dc.type.publicationmasterThesis
dc.contributor.oppiainekoodi4041
dc.subject.ysokompleksiluvut
dc.subject.ysofunktiot
dc.subject.ysoanalyyttiset funktiot
dc.subject.ysolauseet
dc.subject.ysoyhtälöt
dc.subject.ysomääritelmät
dc.subject.ysovyöhykkeet
dc.format.contentfulltext
dc.type.okmG2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot