FIMP dark matter genesis produced via non-thermal freeze-in mechanism
Abstract
Kosmologiset havainnot kuten: galaksien rotaatiokäyrien käyttäytyminen, kosmisen
taustasäteilyn yksityiskohdat ja gravitaatiolinssiefektiin perustuvat galaksijoukkojen
massajakaumat tukevat pimeän aineen olemassaoloa. Havainnot antavat
ymmärtää, että pimeää ainetta on viisinkertainen määrä baryoniseen aineeseen
verrattuna, joka vuorovaikuttaa vain gravitaation kautta. Suurin osa pimeästä
aineesta oletetaan olevan ei-baryonista ja koostuvan standardimallin ulkopuolisista
hiukkasista. Kosmologisista havainnoista huolimatta pimeän aine pysyy näkymättömissä
maailmankaikkeuden kulissien takana, sillä sitä ei ole pystytty kokeellisesti
havaitsemaan. Pimeän aineen voidaan olettaa olevan termisessä tasapainossa varhaisessa
maailmankaikkeudessa ja syntyneen samalla tavalla kuten kevyet reliikit
termisen freeze-out mekanismin kautta. Näin syntynyttä pimeä aine -hiukkasta
kutsutaan WIMPiksi (Weakly Interactive Massive Particle). Pimeä aine voi myös
olla syntynyt vaihtoehtoisesti ei-termisesti freeze-in mekanismin kautta. Tällä
tavalla syntynyttä pimeä aine -hiukkasta kutsutaan FIMPiksi (Feebly Interactive
Massive Particle). Tässä tapauksessa pimeä aine ei missään vaiheessa saavuta termistä
tasapainoa, koska kytkennät muihin hiukkasiin ovat hyvin heikkoja. Tässä
tutkielmassa tarkastellaan molempia syntytapoja pitäen pääpainon freeze-in mekanismissa.
1 → 2 hajonnan ja 2 → 2 sironnan analyyttiset ja numeeriset ratkaisut
määritetään pimeän aineen hiukkastiheydelle, joka on syntynyt freeze-in mekanismin
kautta. Ratkaisut pimeän aineen energiatiheydelle vaadittavilla kytkennöillä
esitetään vastaaville prosesseille.
Cosmological observations such as behavior of galaxy rotation curves, details of the cosmic microwave background and mass distribution of galaxy clusters based on gravitational lensing support the existence of dark matter. Observations indicate, that dark matter interacts only through gravity and outweighs baryonic matter five to one. Majority of dark matter is expected to be non-baryonic and composed of particles beyond Standard Model. Despite the various cosmological observations, dark matter remains hidden behind the scenes of the Universe, since there is no confirmed positive signal from experiments aiming to detect dark matter. In the early universe dark matter can be assumed to be in thermal equilibrium and produced similarly to light relics through thermal freeze-out mechanism involving Weakly Interacting Massive Particle (WIMP). Dark matter can also be produced alternatively non-thermally via freeze-in mechanism, involving Feebly Interacting Massive Particle (FIMP). In this case dark matter never attains thermal equilibrium, since the couplings to other particles are extremely weak. In this thesis both mechanisms are studied with main focus on freeze-in. Analytical and numerical solutions to the comoving number density of dark matter produced via freeze-in is determined for 1 → 2 decay and for 2 → 2 scattering. Solution to the dark matter energy density with required couplings are presented for the corresponding processes.
Cosmological observations such as behavior of galaxy rotation curves, details of the cosmic microwave background and mass distribution of galaxy clusters based on gravitational lensing support the existence of dark matter. Observations indicate, that dark matter interacts only through gravity and outweighs baryonic matter five to one. Majority of dark matter is expected to be non-baryonic and composed of particles beyond Standard Model. Despite the various cosmological observations, dark matter remains hidden behind the scenes of the Universe, since there is no confirmed positive signal from experiments aiming to detect dark matter. In the early universe dark matter can be assumed to be in thermal equilibrium and produced similarly to light relics through thermal freeze-out mechanism involving Weakly Interacting Massive Particle (WIMP). Dark matter can also be produced alternatively non-thermally via freeze-in mechanism, involving Feebly Interacting Massive Particle (FIMP). In this case dark matter never attains thermal equilibrium, since the couplings to other particles are extremely weak. In this thesis both mechanisms are studied with main focus on freeze-in. Analytical and numerical solutions to the comoving number density of dark matter produced via freeze-in is determined for 1 → 2 decay and for 2 → 2 scattering. Solution to the dark matter energy density with required couplings are presented for the corresponding processes.
Main Author
Format
Theses
Master thesis
Published
2019
Subjects
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-201906203328Use this for linking
Language
English