Kvaterniot ja niiden yhteys avaruuden rotaatioihin
Authors
Date
2019Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tämän tutkielman tarkoituksena on näyttää, kuinka kolmiulotteisen reaaliavaruuden rotaatiot voidaan esittää kvaternioita käyttäen. Kvaterniot mielletään kompleksilukujen joukon laajennukseksi, mistä syystä tutkielman aluksi tarkastellaan kompleksilukujen joukkoa ja kompleksilukujen yhteyttä tason kiertoihin. Kun yhteys kompleksilukujen ja tason kiertojen välillä on osoitettu, on luontevaa siirtyä tarkastelemaan vastaavaa yhteyttä kvaternioiden ja avaruuden rotaatioiden välillä. Kvaternioiden joukossa on kompleksilukujen joukosta tutun imaginaariyksikön i lisäksi kaksi muuta imaginaarista yksikköä, j ja k. Kvaterniot ovat muotoa q = a1 + bi + cj + dk, missä luvut a, b, c ja d ovat reaalilukuja. Edelleen kvaternioiden osajoukkoja ovat puhtaiden kvaternioiden joukko Im(ℍ) = {bi + cj + dk : b, c, d ∈ ℝ} sekä reaalikvaternioiden joukko Re(ℍ) = {a1: a ∈ ℝ}. Erityisen kiinnostuneita tässä tutkielmassa ollaan puhtaiden kvaternioiden konjugointikuvauksesta, sillä puhtaiden kvaternioiden konjugointi vastaa kolmiulotteisen reaaliavaruuden rotaatioita. Kvaternioita käytetään avaruuden rotaatioiden tarkastelussa, koska monimutkaisten kiertojen tarkastelu helpottuu huomattavasti kvaternioiden konjugointikuvauksen avulla. Avaruuden kierron määrittämiseksi konjugointikuvauksen avulla riittää, että tiedetään rotaation kiertoakseli u sekä kiertokulma θ, sillä kiertokulman ja -akselin avulla saadaan selville kvaterniokonjugoinnin määräävä kvaternio t.
...


Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [25585]
Related items
Showing items with similar title or keywords.
-
Kompleksiluvut ja kvaterniot kiertoina
Polvinen, Heikki (2012) -
Steinerin sisäellipsi
Pynssi, Maija (2019)Tutkielmassa tutustutaan Steinerin sisäellipsiin. Steinerin sisäellipsiksi kutsutaan kolmion sisällä olevaa ellipsiä, joka sivuaa kolmion jokaista sivua sivun keskipisteessä. Steinerin sisäellipsi on ympyrä jos ja vain ... -
Visible and nonexistent trees of Mandelbrot sets
Kauko, Virpi (University of Jyväskylä, 2003) -
Fuchsin ryhmän perusalue
Gröhn, Matti (2011) -
Polynomiyhtälön ratkaiseminen
Auvinen, Anna-Mari (2018)Tämän tutkielman tarkoituksena on näyttää, kuinka eri asteisia polynomiyhtälöitä ratkaistaan. Todistetaan toisen ja kolmannen asteen yhtälöiden ratkaisukaavat.