Markov chain Monte Carlo importance samplers for Bayesian models with intractable likelihoods
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2019Tekijänoikeudet
© The Author & University of Jyväskylä
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-7738-2ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Vihola, Matti; Helske, Jouni; Franks, Jordan (2020). Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo. Scandinavian Journal of Statistics, Early online. DOI: 10.1111/sjos.12492
- Artikkeli II: Franks, Jordan; Vihola, Matti (2020). Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance. Stochastic Processes and Their Applications, 130 (10), 6157-6183. DOI: 10.1016/j.spa.2020.05.006
- Artikkeli III: Franks, J.; Jasra, A.; Law, K. J. H. and Vihola, M. (2018). Unbiased inference for discretely observed hidden Markov model diffusions. Preprint. arXiv:1807.10259v4
- Artikkeli IV: Vihola, Matti; Franks, Jordan (2020). On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction. Biometrika, 107 (2), 381-395. DOI: 10.1093/biomet/asz078
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [871]
- Väitöskirjat [3602]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ... -
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
Franks, Jordan; Vihola, Matti (Elsevier, 2020)We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent ... -
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
Vihola, Matti; Franks, Jordan (Oxford University Press, 2020)Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation ... -
Conditional particle filters with diffuse initial distributions
Karppinen, Santeri; Vihola, Matti (Springer, 2021)Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which ... -
Theoretical and methodological aspects of MCMC computations with noisy likelihoods
Andrieu, Christophe; Lee, Anthony; Vihola, Matti (Chapman and Hall/CRC, 2018)Approximate Bayesian computation (ABC) [11, 42] is a popular method for Bayesian inference involving an intractable, or expensive to evaluate, likelihood function but where simulation from the model is easy. The method ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.