A classification of C-Fuchsian subgroups of Picard modular groups
Parkkonen, J., & Paulin, F. (2017). A classification of C-Fuchsian subgroups of Picard modular groups. Mathematica Scandinavica, 121(1), 57-74. https://doi.org/10.7146/math.scand.a-26128
Julkaistu sarjassa
Mathematica ScandinavicaPäivämäärä
2017Tekijänoikeudet
© Mathematica Scandinavica, 2017.
Julkaisija
Aarhus Universitet; Svenska MatematikersamfundetISSN Hae Julkaisufoorumista
0025-5521Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27257764
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A classification of $\protect \mathbb{R}$-Fuchsian subgroups of Picard modular groups
Parkkonen, Jouni; Paulin, Frédéric (CEDERAM - Centre de diffusion de revues académiques mathématiques, 2018) -
The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification
Terziyan, Vagan; Kaikova, Olena; Malyk, Diana; Branytskyi, Vladyslav (Elsevier, 2023)In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information ... -
A Computational Approach to Bio-optical Functional Group Classification of Phytoplankton in Inland Waters
Naik, Pritish; Pölönen, Ilkka; Salmi, Pauliina (Aalto-yliopisto, 2024) -
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
DUNE Collaboration (American Physical Society, 2020)The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on ... -
Comparison of feature importance measures as explanations for classification models
Saarela, Mirka; Jauhiainen, Susanne (Springer, 2021)Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.