Show simple item record

dc.contributor.authorDenicol, Gabriel S.
dc.contributor.authorMolnár, Etele
dc.contributor.authorNiemi, Harri
dc.contributor.authorRischke, Dirk H.
dc.date.accessioned2019-04-04T06:02:47Z
dc.date.available2019-04-04T06:02:47Z
dc.date.issued2019
dc.identifier.citationDenicol, G. S., Molnár, E., Niemi, H., & Rischke, D. H. (2019). Resistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation. <i>Physical Review D</i>, <i>99</i>(5), Article 056017. <a href="https://doi.org/10.1103/PhysRevD.99.056017" target="_blank">https://doi.org/10.1103/PhysRevD.99.056017</a>
dc.identifier.otherCONVID_28994833
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/63378
dc.description.abstractWe derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous work [Phys. Rev. D 98, 076009 (2018)], where we only considered the nonresistive limit, to the case of finite electric conductivity. This requires keeping terms proportional to the electric field Eμ in the equations of motions and leads to new transport coefficients due to the coupling of the electric field to dissipative quantities. We also show that the Navier-Stokes limit of the charge-diffusion current corresponds to Ohm’s law, while the coefficients of electrical conductivity and charge diffusion are related by a type of Wiedemann-Franz law.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review D
dc.rightsCC BY 4.0
dc.subject.othermagnetohydrodynamics
dc.subject.otherfluid dynamics
dc.titleResistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-201904022026
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-04-02T06:15:14Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2470-0010
dc.relation.numberinseries5
dc.relation.volume99
dc.type.versionpublishedVersion
dc.rights.copyright© 2019 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber297058
dc.subject.ysoplasmafysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p10238
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1103/PhysRevD.99.056017
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThe authors acknowledge enlightening discussion with G. Moore. E. M. acknowledges the warm hospitality of the Department of Physics of the University of Jyväskylä, where part of this work was done. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Collaborative Research Center CRC-TR 211 “Strong-interaction matter under extreme conditions”—Project No. 315477589—TRR 211. G. S. D. thanks for Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. E. M. is supported by the Bundesministerium für Bildung und Forschung (BMBF) and by the Research Council of Norway, (NFR) Project No. 255253/F50. H. N. is supported by the Academy of Finland, Project No. 297058. D. H. R. is partially supported by the High-end Foreign Experts Project No. GDW20167100136 of the State Administration of Foreign Experts Affairs of China.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0