Weakly controlled Moran constructions and iterated functions systems in metric spaces
Rajala, T., & Vilppolainen, M. (2011). Weakly controlled Moran constructions and iterated functions systems in metric spaces. Illinois Journal of Mathematics, 55(3), 1015-1051. https://doi.org/10.1215/ijm/1369841795
Published in
Illinois Journal of MathematicsDate
2011Copyright
© 2013 University of Illinois
We study the Hausdorff measures of limit sets of weakly controlled Moran constructions in metric spaces. The separation of the construction pieces is closely related to the Hausdorff measure of the corresponding limit set. In particular, we investigate different separation conditions for semiconformal iterated function systems. Our work generalizes well-known results on self-similar sets in metric spaces as well as results on controlled Moran constructions in Euclidean spaces.
Publisher
University of IllinoisISSN Search the Publication Forum
0019-2082Keywords
Moran-konstruktio semikonforminen iteroitu funktiojärjestelmä äärellinen pakkautuminen palloehto avoimen joukon ehto Hausdorffin mitta Hausdorff-ulottuvuus Moran construction semiconformal iterated function system finite clustering property ball condition open set condition Hausdorff measure Hausdorff dimension
Original source
http://projecteuclid.org/euclid.ijm/1369841795Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/22472243
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Notions of Dirichlet problem for functions of least gradient in metric measure spaces
Korte, Riikka; Lahti, Panu; Li, Xining; Shanmugalingam, Nageswari (European Mathematical Society Publishing House, 2019)We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincaré ... -
Dimension estimates on circular (s,t)-Furstenberg sets
Liu, Jiayin (Suomen matemaattinen yhdistys ry, 2023)Tässä työssä osoitetaan, että tason R2Furstenbergin (s,t)-ympyräjoukkojen Hausdorffin ulottuvuus on vähintään max{t3+s,(2t+ 1)s−t} kaikilla 0< s,t≤1. Tämä tulos yleistää Wolffin aiemmin todistamia Kakeyan ympyräjoukkojen ... -
Porosity and dimension of sets and measures
Rajala, Tapio (University of Jyväskylä, 2009) -
On one-dimensionality of metric measure spaces
Schultz, Timo (American Mathematical Society (AMS), 2021)In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to ...