dc.contributor.author Siltakoski, Jarkko dc.date.accessioned 2019-02-21T10:58:21Z dc.date.available 2019-09-01T21:35:16Z dc.date.issued 2018 dc.identifier.citation Siltakoski, J. (2018). Equivalence of viscosity and weak solutions for the normalized p(x)-Laplacian. Calculus of Variations and Partial Differential Equations, 57(4), Article 95. https://doi.org/10.1007/s00526-018-1375-1 dc.identifier.other CONVID_28139463 dc.identifier.other TUTKAID_78126 dc.identifier.uri https://jyx.jyu.fi/handle/123456789/62921 dc.description.abstract We show that viscosity solutions to the normalized p(x)-Laplace fi equation coincide with distributional weak solutions to the strong p(x)-Laplace equation when p is Lipschitz and inf p > 1. This yields C 1,α regularity for the viscosity solutions of the normalized p(x)-Laplace equation. As an additional application, we prove a Radó-type removability theorem. dc.format.mimetype application/pdf dc.language.iso eng dc.publisher Springer dc.relation.ispartofseries Calculus of Variations and Partial Differential Equations dc.rights In Copyright dc.subject.other osittaisdifferentiaaliyhtälöt fi dc.subject.other partial differential equations fi dc.title Equivalence of viscosity and weak solutions for the normalized p(x)-Laplacian dc.type article dc.identifier.urn URN:NBN:fi:jyu-201902131495 dc.contributor.laitos Matematiikan ja tilastotieteen laitos fi dc.contributor.laitos Department of Mathematics and Statistics en dc.contributor.oppiaine Matematiikka fi dc.contributor.oppiaine Mathematics en dc.type.uri http://purl.org/eprint/type/JournalArticle dc.date.updated 2019-02-13T13:15:16Z dc.description.reviewstatus peerReviewed dc.relation.issn 0944-2669 dc.relation.numberinseries 4 dc.relation.volume 57 dc.type.version acceptedVersion dc.rights.copyright © Springer-Verlag GmbH Germany, part of Springer Nature 2018. dc.rights.accesslevel openAccess fi dc.subject.yso osittaisdifferentiaaliyhtälöt dc.format.content fulltext jyx.subject.uri http://www.yso.fi/onto/yso/p12392 dc.rights.url http://rightsstatements.org/page/InC/1.0/?language=en dc.relation.doi 10.1007/s00526-018-1375-1
﻿

### This item appears in the following Collection(s)

Except where otherwise noted, this item's license is described as In Copyright