dc.contributor.author | Kärkkäinen, Tommi | |
dc.date.accessioned | 2019-02-11T11:17:52Z | |
dc.date.available | 2019-02-11T11:17:52Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Kärkkäinen, T. (2018). Extreme Minimal Learning Machine. In <i>ESANN 2018 : Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning</i> (pp. 237-242). ESANN. <a href="https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2018-72.pdf" target="_blank">https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2018-72.pdf</a> | |
dc.identifier.other | CONVID_28889038 | |
dc.identifier.other | TUTKAID_80471 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/62746 | |
dc.description.abstract | Extreme Learning Machine (ELM) and Minimal Learning Machine (MLM) are nonlinear and scalable machine learning techniques with randomly generated basis. Both techniques share a step where a matrix of weights for the linear combination of the basis is recovered. In MLM, the kernel in this step corresponds to distance calculations between the training data and a set of reference points, whereas in ELM transformation with a sigmoidal activation function is most commonly used. MLM then needs additional interpolation step to estimate the actual distance-regression based output. A natural combination of these two techniques is proposed here, i.e., to use a distance-based kernel characteristic in MLM in ELM. The experimental results show promising potential of the proposed technique.Extreme Learning Machine (ELM) and Minimal Learning Machine (MLM) are nonlinear and scalable machine learning techniques with randomly generated basis. Both techniques share a step where a matrix of weights for the linear combination of the basis is recovered. In MLM, the kernel in this step corresponds to distance calculations between the training data and a set of reference points, whereas in ELM transformation with a sigmoidal activation function is most commonly used. MLM then needs additional interpolation step to estimate the actual distance-regression based output. A natural combination of these two techniques is proposed here, i.e., to use a distance-based kernel characteristic in MLM in ELM. The experimental results show promising potential of the proposed technique. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | ESANN | |
dc.relation.ispartof | ESANN 2018 : Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.uri | https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2018-72.pdf | |
dc.rights | In Copyright | |
dc.subject.other | Extreme Learning Machine | |
dc.subject.other | Minimal Learning Machine | |
dc.title | Extreme Minimal Learning Machine | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-201901281316 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.date.updated | 2019-01-28T07:15:14Z | |
dc.relation.isbn | 978-2-87587-047-6 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 237-242 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Author, 2018 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.grantnumber | 315550 | |
dc.relation.grantnumber | 311877 | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Academy of Finland | en |
dc.relation.funder | Academy of Finland | en |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundinginformation | The work of TK has been supported by the Academy of Finland from the projects 311877 (Demo) and 315550 (HNP-AI). The author gratefully acknowledge the role of ESANN in facilitating a collaborative platform with other active research groups of the two methods [11, 12]. | |
dc.type.okm | A4 | |