Näytä suppeat kuvailutiedot

dc.contributor.authorCapogna, Luca
dc.contributor.authorCitti, Giovanna
dc.contributor.authorLe Donne, Enrico
dc.contributor.authorOttazzi, Alessandro
dc.date.accessioned2019-01-17T12:31:04Z
dc.date.available2021-03-01T22:35:11Z
dc.date.issued2019
dc.identifier.citationCapogna, L., Citti, G., Le Donne, E., & Ottazzi, A. (2019). Conformality and Q-harmonicity in sub-Riemannian manifolds. <i>Journal de Mathematiques Pures et Appliquees</i>, <i>122</i>, 67-124. <a href="https://doi.org/10.1016/j.matpur.2017.12.006" target="_blank">https://doi.org/10.1016/j.matpur.2017.12.006</a>
dc.identifier.otherCONVID_27759730
dc.identifier.otherTUTKAID_76047
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/62534
dc.description.abstractWe establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact sub-Riemannian manifolds. Together with the recent results in [15], our work yields a new proof of the smoothness of boundary extensions of biholomorphims between strictly pseudoconvex smooth domains [29].en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Masson
dc.relation.ispartofseriesJournal de Mathematiques Pures et Appliquees
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherconformal transformation
dc.subject.otherquasi-conformal maps
dc.subject.othersubelliptic PDE
dc.subject.otherharmonic coordinates
dc.subject.otherLiouville theorem
dc.subject.otherpopp measure
dc.subject.othermorphism property
dc.subject.otherregularity for p-harmonic functions
dc.subject.othersub-Riemannian geometry
dc.titleConformality and Q-harmonicity in sub-Riemannian manifolds
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-201901171227
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.date.updated2019-01-17T10:15:05Z
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange67-124
dc.relation.issn0021-7824
dc.relation.numberinseries0
dc.relation.volume122
dc.type.versionacceptedVersion
dc.rights.copyright© 2017 Elsevier Masson SAS
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber607643
dc.relation.grantnumber607643
dc.relation.grantnumber288501
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/607643/EU//
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysomonistot
dc.subject.ysodifferentiaaligeometria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p28181
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.matpur.2017.12.006
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuropean Commissionen
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramEU:n 7. puiteohjelma (FP7)fi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramFP7 (EU's 7th Framework Programme)en
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundinginformationPartially funded by NSF awards DMS 1449143 and DMS 1503683.2. Partially funded by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007–2013/ under REA grant agreement No. 607643 and by the European Unions Horizon 2020 research programme, Marie Skłodowska-Curie grant agreement No. 777822. 3. Supported by the Academy of Finland, project No. 288501.4. Partially supported by the Australian Research Council, project No. DP140100531.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0